440 likes | 602 Views
Basis Basics. Selected from presentations by Jim Ramsay, McGill University, Hongliang Fei, and Brian Quanz. 1. Introduction. Basis: In Linear Algebra, a basis is a set of vectors satisfying: Linear combination of the basis can represent every vector in a given vector space;
E N D
Basis Basics Selected from presentations by Jim Ramsay, McGill University, Hongliang Fei, and Brian Quanz
1. Introduction • Basis: In Linear Algebra, a basis is a set of vectors satisfying: • Linear combination of the basis can represent every vector in a given vector space; • No element of the set can be represented as a linear combination of the others.
In Function Space, Basis is degenerated to a set of basis functions; • Each function in the function space can be represented as a linear combination of the basis functions. • Example: Quadratic Polynomial bases {1,t,t^2}
What are basis functions? • We need flexible method for constructing a function f(t) that can track local curvature. • We pick a system of Kbasis functions φk(t), and call this thebasisfor f(t). • We express f(t) as a weighted sum of these basis functions: f(t) =a1φ1(t) + a2φ2(t) + … + aKφK(t) The coefficients a1, … , aK determine the shape of the function.
What do we want from basis functions? • Fast computation of individual basis functions. • Flexible: can exhibit the required curvature where needed, but also be nearly linear when appropriate. • Fast computation of coefficients ak: possible if matrices of values are diagonal, banded or sparse. • Differentiable as required: We make lots of use of derivatives in functional data analysis. • Constrained as required, such as periodicity, positivity, monotonicity, asymptotes and etc.
What are some commonly used basis functions? • Powers: 1, t, t2, and so on. They are the basis functions for polynomials. These are not very flexible, and are used only for simple problems. • Fourier series: 1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), and so on for a fixed known frequency ω. These are used for periodic functions. • Spline functions: These have now more or less replaced polynomials for non-periodic problems. More explanation follows.
What is Basis Expansion? • Given data X and transformation Then we model as a linear basis expansion in X, where is a basis function.
Why Basis Expansion? • In regression problems, f(X) will typically nonlinear in X; • Linear model is convenient and easy to interpret; • When sample size is very small but attribute size is very large, linear model is all what we can do to avoid over fitting.
2. Piecewise Polynomials and Splines • Spline: • In Mathematics, a spline is a special function defined piecewise by polynomials; • In Computer Science, the term spline more frequently refers to a piecewise polynomial (parametric) curve. • Simple construction, ease and accuracy of evaluation, capacity to approximate complex shapes through curve fitting and interactive curve design.
Assume four knots spline (two boundary knots and two interior knots), also X is one dimensional. • Piecewise constant basis: • Piecewise Linear Basis:
Piecewise Cubic Polynomial • Basis functions: • Six functions corresponding to a six-dimensional linear space.
Spline Interpolation Method Slides taken from the lecture by Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu
What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. http://numericalmethods.eng.usf.edu
Interpolants Polynomials are the most common choice of interpolants because they are easy to: • Evaluate • Differentiate, and • Integrate. http://numericalmethods.eng.usf.edu
Why Splines ? http://numericalmethods.eng.usf.edu
Why Splines ? Figure : Higher order polynomial interpolation is a bad idea http://numericalmethods.eng.usf.edu
Linear Interpolation http://numericalmethods.eng.usf.edu
Linear Interpolation (contd) http://numericalmethods.eng.usf.edu
Example The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using linear splines. Table Velocity as a function of time Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu
Linear Interpolation http://numericalmethods.eng.usf.edu
Quadratic Interpolation http://numericalmethods.eng.usf.edu
Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu
Quadratic Splines (contd) http://numericalmethods.eng.usf.edu
Quadratic Splines (contd) http://numericalmethods.eng.usf.edu
Quadratic Splines (contd) http://numericalmethods.eng.usf.edu
Quadratic Spline Example The upward velocity of a rocket is given as a function of time. Using quadratic splines Find the velocity at t=16 seconds Find the acceleration at t=16 seconds Find the distance covered between t=11 and t=16 seconds Table Velocity as a function of time Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu
Solution Let us set up the equations http://numericalmethods.eng.usf.edu
Each Spline Goes Through Two Consecutive Data Points http://numericalmethods.eng.usf.edu
Each Spline Goes Through Two Consecutive Data Points http://numericalmethods.eng.usf.edu
Derivatives are Continuous at Interior Data Points http://numericalmethods.eng.usf.edu
Derivatives are continuous at Interior Data Points At t=10 At t=15 At t=20 At t=22.5 http://numericalmethods.eng.usf.edu
Last Equation http://numericalmethods.eng.usf.edu
Final Set of Equations http://numericalmethods.eng.usf.edu
Coefficients of Spline http://numericalmethods.eng.usf.edu
Quadratic Spline InterpolationPart 2 of 2http://numericalmethods.eng.usf.edu http://numericalmethods.eng.usf.edu
Final Solution http://numericalmethods.eng.usf.edu
Velocity at a Particular Point a) Velocity at t=16 http://numericalmethods.eng.usf.edu
Quadratic Spline Graph t=a:2:b;
Quadratic Spline Graph t=a:0.5:b;
x t0 t1 … tn y y0 y1 … yn Natural Cubic Spline Interpolation • The domain of S is an interval [a,b]. • S, S’, S’’ are all continuous functions on [a,b]. • There are points ti (the knots of S) such that a = t0 < t1 < .. tn = b and such that S is a polynomial of degree at most k on each subinterval [ti, ti+1]. SPLINE OF DEGREE k = 3 ti are knots
Natural Cubic Spline Interpolation Si(x) is a cubic polynomial that will be used on the subinterval [ xi, xi+1 ].
Natural Cubic Spline Interpolation • Si(x) = aix3 + bix2 + cix + di • 4 Coefficients with n subintervals = 4n equations • There are 4n-2 conditions • Interpolation conditions • Continuity conditions • Natural Conditions • S’’(x0) = 0 • S’’(xn) = 0