1 / 45

For Wednesday

For Wednesday. No reading Homework: Chapter 8, exercise 24. Program 1. Any questions?. Homework. Generalized Modus Ponens. Combines three steps of “natural deduction” (Universal Elimination, And Introduction, Modus Ponens) into one.

zofia
Download Presentation

For Wednesday

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. For Wednesday • No reading • Homework: • Chapter 8, exercise 24

  2. Program 1 • Any questions?

  3. Homework

  4. Generalized Modus Ponens • Combines three steps of “natural deduction” (Universal Elimination, And Introduction, Modus Ponens) into one. • Provides direction and simplification to the proof process for standard inferences. • Generalized Modus Ponens: p1', p2', ...pn', (p1Ù p2Ù...Ù pnÞ q) |- SUBST(q,q) where q is a substitution such that for all i SUBST(q,pi') = SUBST(q,pi)

  5. Example 1) "x,y(Parent(x,y) Ù Male(x) Þ Father(x,y)) 2) Parent(Tom,John) 3) Male(Tom) q={x/Tom, y/John) 4) Father(Tom,John)

  6. Canonical Form • In order to use generalized Modus Ponens, all sentences in the KB must be in the form of Horn sentences: "v1 ,v2 ,...vn p1Ù p2Ù...ÙpmÞ q • Also called Horn clauses, where a clause is a disjunction of literals, because they can be rewritten as disjunctions with at most one non­negated literal. "v1 ,v 2 ,...vn ¬p1Ú ¬p2Ú ... Ú ¬ pnÚ q

  7. Horn Clauses • Single positive literals (facts) are Horn clauses with no antecedent. • Quantifiers can be dropped since all variables can be assumed to be universally quantified by default. • Many statements can be transformed into Horn clauses, but many cannot (e.g. P(x)ÚQ(x), ¬P(x))

  8. Unification • In order to match antecedents to existing literals in the KB, we need a pattern matching routine. • UNIFY(p,q) takes two atomic sentences and returns a substitution that makes them equivalent. • UNIFY(p,q)=q where SUBST(q,p)=SUBST(q,q) • q is called a unifier

  9. Unification Examples UNIFY(Parent(x,y), Parent(Tom, John)) = {x/Tom, y/John} UNIFY(Parent(Tom,x), Parent(Tom, John)) = {x/John}) UNIFY(Likes(x,y), Likes(z,FOPC)) = {x/z, y/FOPC} UNIFY(Likes(Tom,y), Likes(z,FOPC)) = {z/Tom, y/FOPC} UNIFY(Likes(Tom,y), Likes(y,FOPC)) = fail UNIFY(Likes(Tom,Tom), Likes(x,x)) = {x/Tom} UNIFY(Likes(Tom,Fred), Likes(x,x)) = fail

  10. Same Variable • Exact variable names used in sentences in the KB should not matter. • But if Likes(x,FOPC) is a formula in the KB, it does not unify with Likes(John,x) but does unify with Likes(John,y) • We can standardize one of the arguments to UNIFY to make its variables unique by renaming them. Likes(x,FOPC) ­> Likes(x1 , FOPC) UNIFY(Likes(John,x),Likes(x1 ,FOPC)) = {x1 /John, x/FOPC}

  11. Which Unifier? • There are many possible unifiers for some atomic sentences. • UNIFY(Likes(x,y),Likes(z,FOPC)) = • {x/z, y/FOPC} • {x/John, z/John, y/FOPC} • {x/Fred, z/Fred, y/FOPC} • ...... • UNIFY should return the most general unifier which makes the least commitment to variable values.

  12. How Do We Use It? • We have two primary methods for using Generalized Modus Ponens • We can start with the knowledge base and try to generate new sentences • Forward Chaining • We can start with a sentence we want to prove and try to work backward until we can establish the facts from the knowledge base • Backward Chaining

  13. Forward Chaining • Use modus ponens to derive all consequences from new information. • Inferences cascade to draw deeper and deeper conclusions • To avoid looping and duplicated effort, must prevent addition of a sentence to the KB which is the same as one already present. • Must determine all ways in which a rule (Horn clause) can match existing facts to draw new conclusions.

  14. Assumptions • A sentence is a renaming of another if it is the same except for a renaming of the variables. • The composition of two substitutions combines the variable bindings of both such that: SUBST(COMPOSE(q1,q2),p) = SUBST(q2,SUBST(q1,p))

  15. Forward Chaining Algorithm procedure FORWARD­CHAIN(KB, p) if there is a sentence in KB that is a renaming of pthen return Add p to KB foreach ( p1 . . . pnq) inKB such that for some i, UNIFY( pi, p) = q succeeds do FIND­AND­INFER(KB, [p1, …, pi-1, pi-1 ,…, pn],q,q) end procedure FIND­AND­INFER(KB,premises,conclusion,q) ifpremises = [] then FORWARD-CHAIN(KB, SUBST(q, conclusion)) else for eachp´ in KB such that UNIFY(p´ , SUBST(q, FIRST( premises))) = q2do FIND­AND­INFER(KB, REST( premises), conclusion, COMPOSE(q, q2)) end

  16. Forward Chaining Example Assume in KB 1) Parent(x,y) Ù Male(x) Þ Father(x,y) 2) Father(x,y) Ù Father(x,z) Þ Sibling(y,z) Add to KB 3) Parent(Tom,John) Rule 1) tried but can't ``fire'' Add to KB 4) Male(Tom) Rule 1) now satisfied and triggered and adds: 5) Father(Tom, John) Rule 2) now triggered and adds: 6) Sibling(John, John) {x/Tom, y/John, z/John}

  17. Example cont. Add to KB 7) Parent(Tom,Fred) Rule 1) triggered again and adds: 8) Father(Tom,Fred) Rule 2) triggered again and adds: 9) Sibling(Fred,Fred) {x/Tom, y/Fred, z/Fred} Rule 2) triggered again and adds: 10) Sibling(John, Fred) {x/Tom, y/John, z/Fred} Rule 2) triggered again and adds: 11) Sibling(Fred, John) {x/Tom, y/Fred, z/John}

  18. Problems with Forward Chaining • Inference can explode forward and may never terminate. • Consider the following: Even(x) Þ Even(plus(x,2)) Integer(x) Þ Even(times(2,x)) Even(x) Þ Integer(x) Even(2) • Inference is not directed towards any particular conclusion or goal. May draw lots of irrelevant conclusions

  19. Backward Chaining • Start from query or atomic sentence to be proven and look for ways to prove it. • Query can contain variables which are assumed to be existentially quantified. Sibling(x,John) ? Father(x,y) ? • Inference process should return all sets of variable bindings that satisfy the query.

  20. Method • First try to answer query by unifying it to all possible facts in the KB. • Next try to prove it using a rule whose consequent unifies with the query and then try to recursively prove all of its antecedents. • Given a conjunction of queries, first get all possible answers to the first conjunct and then for each resulting substitution try to prove all of the remaining conjuncts. • Assume variables in rules are renamed (standardized apart) before each use of a rule.

  21. Backchaining Examples KB: 1) Parent(x,y) Ù Male(x) Þ Father(x,y) 2) Father(x,y) Ù Father(x,z) Þ Sibling(y,z) 3) Parent(Tom,John) 4) Male(Tom) 7) Parent(Tom,Fred) Query: Parent(Tom,x) Answers: ( {x/John}, {x/Fred})

  22. Query: Father(Tom,s) Subgoal: Parent(Tom,s) Ù Male(Tom) {s/John} Subgoal: Male(Tom) Answer: {s/John} {s/Fred} Subgoal: Male(Tom) Answer: {s/Fred} Answers: ({s/John}, {s/Fred})

  23. Query: Father(f,s) Subgoal: Parent(f,s) Ù Male(f) {f/Tom, s/John} Subgoal: Male(Tom) Answer: {f/Tom, s/John} {f/Tom, s/Fred} Subgoal: Male(Tom) Answer: {f/Tom, s/Fred} Answers: ({f/Tom,s/John}, {f/Tom,s/Fred})

  24. Query: Sibling(a,b) Subgoal: Father(f,a) Ù Father(f,b) {f/Tom, a/John} Subgoal: Father(Tom,b) {b/John} Answer: {f/Tom, a/John, b/John} {b/Fred} Answer: {f/Tom, a/John, b/Fred} {f/Tom, a/Fred} Subgoal: Father(Tom,b) {b/John} Answer: {f/Tom, a/Fred, b/John} {b/Fred} Answer: {f/Tom, a/Fred, b/Fred} Answers: ({f/Tom, a/John, b/John},{f/Tom, a/John, b/Fred} {f/Tom, a/Fred, b/John}, {f/Tom, a/Fred, b/Fred})

  25. Incompleteness • Rule­based inference is not complete, but is reasonably efficient and useful in many circumstances. • Still can be exponential or not terminate in worst case. • Incompleteness example: P(x) Þ Q(x) ¬P(x) Þ R(x) (not Horn) Q(x) Þ S(x) R(x) Þ S(x) • Entails S(A) for any constant A but is not inferable from modus ponens

  26. Completeness • In 1930 GÖdel showed that a complete inference procedure for FOPC existed, but did not demonstrate one (non­constructive proof). • In 1965, Robinson showed a resolution inference procedure that was sound and complete for FOPC. • However, the procedure may not halt if asked to prove a thoerem that is not true, it is said to be semidecidable (a type of undecidability). • If a conclusion C is entailed by the KB then the procedure will eventually terminate with a proof. However if it is not entailed, it may never halt. • It does not follow that either C or ¬C is entailed by a KB (may be independent). Therefore trying to prove both a conjecture and its negation does not help. • Inconsistency of a KB is also semidecidable.

  27. Resolution • Propositional version. {a Ú b, ¬b Ú c} |- a Ú c OR {¬aÞ b, b Þ c} |- ¬a Þ c Reasoning by cases OR transitivity of implication • First­order form • For two literals pj and qk in two clauses • p1Ú ... pj ... Ú pm • q1Ú ... qk ... Ú qn such that q=UNIFY(pj , ¬qk), derive SUBST(q, p1Ú...pj­1Úpj+1...ÚpmÚq1Ú...qk­1 qk+1...Úqn)

  28. Implication form • Can also be viewed in implicational form where all negated literals are in a conjunctive antecedent and all positive literals in a disjunctive conclusion. ¬p1Ú...Ú¬pmÚq1Ú...ÚqnÛ p1Ù... Ù pmÞ q1Ú ...Ú qn

  29. Conjunctive Normal Form (CNF) • For resolution to apply, all sentences must be in conjunctive normal form, a conjunction of disjunctions of literals (a1Ú ...Ú am) Ù (b1Ú ... Ú bn) Ù ..... Ù (x1Ú ... Ú xv) • Representable by a set of clauses (disjunctions of literals) • Also representable as a set of implications (INF).

  30. Example Initial CNF INF P(x) Þ Q(x) ¬P(x) Ú Q(x) P(x) Þ Q(x) ¬P(x) Þ R(x) P(x) Ú R(x) True Þ P(x) Ú R(x) Q(x) Þ S(x) ¬Q(x) Ú S(x) Q(x) Þ S(x) R(x) Þ S(x) ¬R(x) Ú S(x) R(x) Þ S(x)

  31. Resolution Proofs • INF (CNF) is more expressive than Horn clauses. • Resolution is simply a generalization of modus ponens. • As with modus ponens, chains of resolution steps can be used to construct proofs. • Factoring removes redundant literals from clauses • S(A) Ú S(A) -> S(A)

  32. Sample Proof P(w)  Q(w) Q(y)  S(y) {y/w} P(w)  S(w) True  P(x)  R(x) {w/x} True  S(x)  R(x) R(z)  S(z) {x/A, z/A} True  S(A)

  33. Refutation Proofs • Unfortunately, resolution proofs in this form are still incomplete. • For example, it cannot prove any tautology (e.g. PÚ¬P) from the empty KB since there are no clauses to resolve. • Therefore, use proof by contradiction (refutation, reductio ad absurdum). Assume the negation of the theorem P and try to derive a contradiction (False, the empty clause). • (KB Ù ¬P Þ False) Û KB Þ P

  34. Sample Proof P(w)  Q(w) Q(y)  S(y) {y/w} P(w)  S(w) True  P(x)  R(x) {w/x} True  S(x)  R(x) R(z)  S(z) {z/x} S(A)  False True  S(x) {x/A} False

  35. Resolution Theorem Proving • Convert sentences in the KB to CNF (clausal form) • Take the negation of the proposed theorem (query), convert it to CNF, and add it to the KB. • Repeatedly apply the resolution rule to derive new clauses. • If the empty clause (False) is eventually derived, stop and conclude that the proposed theorem is true.

  36. Conversion to Clausal Form • Eliminate implications and biconditionals by rewriting them. p Þ q -> ¬p Ú q p Û q ­> (¬p Ú q) Ù (p Ú ¬q) • Move ¬ inward to only be a part of literals by using deMorgan's laws and quantifier rules. ¬(p Ú q) -> ¬p Ù ¬q ¬(p Ù q) -> ¬p Ú¬q ¬"x p -> $x ¬p ¬$x p -> "x ¬p ¬¬p -> p

  37. Conversion continued • Standardize variables to avoid use of the same variable name by two different quantifiers. "x P(x) Ú$x P(x) -> "x1 P(x1) Ú $x2 P(x2) • Move quantifiers left while maintaining order. Renaming above guarantees this is a truth­preserving transformation. "x1 P(x1) Ú $x2 P(x2) -> "x1$x2 (P(x1) Ú P(x2))

  38. Conversion continued • Skolemize: Remove existential quantifiers by replacing each existentially quantified variable with a Skolem constant or Skolem function as appropriate. • If an existential variable is not within the scope of any universally quantified variable, then replace every instance of the variable with the same unique constant that does not appear anywhere else. $x (P(x) Ù Q(x)) -> P(C1) Ù Q(C1) • If it is within the scope of n universally quantified variables, then replace it with a unique n­ary function over these universally quantified variables. "x1$x2(P(x1) Ú P(x2)) -> "x1 (P(x1) Ú P(f1(x1))) "x(Person(x) Þ$y(Heart(y) Ù Has(x,y))) -> "x(Person(x) Þ Heart(HeartOf(x)) Ù Has(x,HeartOf(x))) • Afterwards, all variables can be assumed to be universally quantified, so remove all quantifiers.

  39. Conversion continued • Distribute Ù over Ú to convert to conjunctions of clauses (aÙb) Ú c -> (aÚc) Ù (bÚc) (aÙb) Ú (cÙd) -> (aÚc) Ù (bÚc) Ù (aÚd) Ù (bÚd) • Can exponentially expand size of sentence. • Flatten nested conjunctions and disjunctions to get final CNF (a Ú b) Ú c -> (a Ú b Ú c) (a Ù b) Ù c -> (a Ù b Ù c) • Convert clauses to implications if desired for readability (¬a Ú ¬b Ú c Ú d) -> a Ù b Þ c Ú d

  40. Sample Clause Conversion "x((Prof(x) Ú Student(x)) Þ($y(Class(y) Ù Has(x,y)) Ù$y(Book(y) Ù Has(x,y)))) "x(¬(Prof(x) Ú Student(x)) Ú($y(Class(y) Ù Has(x,y)) Ù$y(Book(y) Ù Has(x,y)))) "x((¬Prof(x) Ù ¬Student(x)) Ú ($y(Class(y) Ù Has(x,y)) Ù$y(Book(y) Ù Has(x,y)))) "x((¬Prof(x) Ù ¬Student(x)) Ú ($y(Class(y) Ù Has(x,y)) Ù$z(Book(z) Ù Has(x,z)))) "x$y$z((¬Prof(x)Ù¬Student(x))Ú ((Class(y) Ù Has(x,y)) Ù (Book(z) Ù Has(x,z)))) (¬Prof(x)Ù¬Student(x))Ú (Class(f(x)) Ù Has(x,f(x)) Ù Book(g(x)) Ù Has(x,g(x))))

  41. Clause Conversion (¬Prof(x)Ù¬Student(x))Ú (Class(f(x)) Ù Has(x,f(x)) Ù Book(g(x)) Ù Has(x,g(x)))) (¬Prof(x) Ú Class(f(x))) Ù (¬Prof(x) Ú Has(x,f(x))) Ù (¬Prof(x) Ú Book(g(x))) Ù (¬Prof(x) Ú Has(x,g(x))) Ù (¬Student(x) Ú Class(f(x))) Ù (¬Student(x) Ú Has(x,f(x))) Ù (¬Student(x) Ú Book(g(x))) Ù (¬Student(x) Ú Has(x,g(x))))

  42. Sample Resolution Problem • Jack owns a dog. • Every dog owner is an animal lover. • No animal lover kills an animal. • Either Jack or Curiosity killed Tuna the cat. • Did Curiosity kill the cat?

  43. In Logic Form A) $x Dog(x) Ù Owns(Jack,x) B) "x ($y Dog(y) Ù Owns(x,y)) Þ AnimalLover(x)) C) "x AnimalLover(x) Þ ("y Animal(y) Þ ¬Kills(x,y)) D) Kills(Jack,Tuna) Ú Kills(Cursiosity,Tuna) E) Cat(Tuna) F) "x(Cat(x) Þ Animal(x)) Query: Kills(Curiosity,Tuna)

  44. In Normal Form A1) Dog(D) A2) Owns(Jack,D) B) Dog(y) Ù Owns(x,y) Þ AnimalLover(x) C) AnimalLover(x) Ù Animal(y) Ù Kills(x,y) Þ False D) Kills(Jack,Tuna) Ú Kills(Curiosity,Tuna) E) Cat(Tuna) F) Cat(x) Þ Animal(x) Query: Kills(Curiosity,Tuna) Þ False

  45. Resolution Proof

More Related