1 / 190

Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis

Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis KIPAC Seminar Jan 7 2013 . E. Cosmic Inflation: Great phenomenology, but O riginal goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. .

zohar
Download Presentation

Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis KIPAC Seminar Jan 7 2013 A. Albrecht @ Stanford Jan 7 2013

  2. A. Albrecht @ Stanford Jan 7 2013

  3. A. Albrecht @ Stanford Jan 7 2013

  4. E A. Albrecht @ Stanford Jan 7 2013

  5. Cosmic Inflation: • Great phenomenology, but • Original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. A. Albrecht @ Stanford Jan 7 2013

  6. Cosmic Inflation: • Great phenomenology, but • Original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. This Talk A. Albrecht @ Stanford Jan 7 2013

  7. Cosmic Inflation: • Great phenomenology, but • Original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. • OR: Just be happy we have equations to solve? A. Albrecht @ Stanford Jan 7 2013

  8. OUTLINE Big Bang & inflation basics Eternal inflation de Sitter Equilibrium cosmology Cosmic curvature from de Sitter Equilibrium cosmology A. Albrecht @ Stanford Jan 7 2013

  9. OUTLINE Big Bang & inflation basics Eternal inflation de Sitter Equilibrium cosmology Cosmic curvature from de Sitter Equilibrium cosmology A. Albrecht @ Stanford Jan 7 2013

  10. Friedmann Eqn. A. Albrecht @ Stanford Jan 7 2013

  11. Friedmann Eqn. A. Albrecht @ Stanford Jan 7 2013

  12. Friedmann Eqn. Hubble parameter (“constant”, because today it takes ~10Billion years to change appreciable) A. Albrecht @ Stanford Jan 7 2013

  13. Friedmann Eqn. Hubble parameter (“constant”, because today it takes ~10Billion years to change appreciable) “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  14. Friedmann Eqn. Curvature “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  15. Friedmann Eqn. Curvature Relativistic Matter “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  16. Friedmann Eqn. Curvature Non-relativistic Matter Relativistic Matter “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  17. Friedmann Eqn. Dark Energy Curvature Non-relativistic Matter Relativistic Matter “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  18. Evolution of Cosmic Matter A. Albrecht @ Stanford Jan 7 2013

  19. Evolution of Cosmic Matter A. Albrecht @ Stanford Jan 7 2013

  20. Evolution of Cosmic Matter A. Albrecht @ Stanford Jan 7 2013

  21. The curvature feature/“problem” A. Albrecht @ Stanford Jan 7 2013

  22. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  23. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  24. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  25. The curvature feature/“problem” A. Albrecht @ Stanford Jan 7 2013

  26. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  27. The monopole “problem” A. Albrecht @ Stanford Jan 7 2013

  28. The monopole “problem” ! A. Albrecht @ Stanford Jan 7 2013

  29. Friedmann Eqn. Dark Energy Curvature Non-relativistic Matter Relativistic Matter A. Albrecht @ Stanford Jan 7 2013

  30. Now add cosmic inflation Friedmann Eqn. Dark Energy Inflaton Curvature Non-relativistic Matter Relativistic Matter A. Albrecht @ Stanford Jan 7 2013

  31. Now add cosmic inflation Friedmann Eqn. Dark Energy Inflaton Curvature Non-relativistic Matter Relativistic Matter  A. Albrecht @ Stanford Jan 7 2013

  32. Now add cosmic inflation Friedmann Eqn. Dark Energy Inflaton Curvature Non-relativistic Matter Relativistic Matter A. Albrecht @ Stanford Jan 7 2013

  33. The inflaton: ~Homogeneous scalar field obeying Cosmic damping Coupling to ordinary matter All potentials have a “low roll” (overdamped) regime where A. Albrecht @ Stanford Jan 7 2013

  34. The inflaton: ~Homogeneous scalar field obeying Cosmic damping Coupling to ordinary matter All potentials have a “low roll” (overdamped) regime where A. Albrecht @ Stanford Jan 7 2013

  35. Add a period of Inflation: A. Albrecht @ Stanford Jan 7 2013

  36. With inflation, initially large curvature is OK: A. Albrecht @ Stanford Jan 7 2013

  37. With inflation, early production of large amounts of non-relativistic matter (monopoles) is ok : A. Albrecht @ Stanford Jan 7 2013

  38. With inflation, early production of large amounts of non-relativistic matter (monopoles) is ok : A. Albrecht @ Stanford Jan 7 2013

  39. Inflation detail: A. Albrecht @ Stanford Jan 7 2013

  40. Inflation detail: A. Albrecht @ Stanford Jan 7 2013

  41. Hubble Length A. Albrecht @ Stanford Jan 7 2013

  42. Hubble Length (aka ) A. Albrecht @ Stanford Jan 7 2013

  43. A. Albrecht @ Stanford Jan 7 2013

  44. A. Albrecht @ Stanford Jan 7 2013

  45. A. Albrecht @ Stanford Jan 7 2013

  46. A. Albrecht @ Stanford Jan 7 2013

  47. A. Albrecht @ Stanford Jan 7 2013

  48. A. Albrecht @ Stanford Jan 7 2013

  49. A. Albrecht @ Stanford Jan 7 2013

  50. A. Albrecht @ Stanford Jan 7 2013

More Related