1 / 11

Energy

Energy. – the ability to do work or produce heat Exists in 2 forms: Kinetic energy – energy of motion Potential energy – energy at rest or energy of position HEAT = the energy that transfers from one object to another because of a temperature difference between them

zoie
Download Presentation

Energy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energy – the ability to do work or produce heat • Exists in 2 forms: • Kinetic energy – energy of motion • Potential energy – energy at rest or energy of position • HEAT= the energy that transfers from one object to another because of a temperature difference between them • Heat always flows from a warmer object to a cooler object

  2. Energy • Kinetic energy – in a chemical reaction temperature is the determining factor • The higher the temperature…the faster the particles move…the higher the average kinetic energy • Therefore, the lower the temperature the ________ the kinetic energy. • Temperature is a measure of the average kinetic energy • Kelvin scale: 0 K = -273 °C, °C + 273 = K

  3. Law of Conservation of Energy • Law of Conservation of Energy – Energy is neither created nor destroyed

  4. Heat (q) • Heat or energy can be in joules, calories, kilocalories, or kilojoules • The SI unit is the joule • 1 Cal = 1000 cal = 1 kcal • 1 cal = 4.186 J • 1kcal = 4186J • 1 J = 0.239 cal

  5. Heat Capacity • The amount of heat it takes to change an object’s temperature by 1ºC • Depends on an object’s mass • Ex. A cup of water has a greater heat capacity than a drop of water.

  6. Specific Heat (C) • Specific Heat (C) – the amount of heat required to raise the temperature of 1 gram of a substance by 1C • Specific heat is an intensive property, and therefore does not depend on size • Every substance has its own specific heat (look at your CRM) • Ex. Water = 4.184 J/(gºC) Glass = 0.500 J/(gºC) *The higher the specific heat, the greatest amount of energy! The lower the specific heat, the larger the increase in temperature!

  7. Specific Heat • Units for C = J/gºC (joules per gram degree Celsius) • Equation for Specific Heat: C = q / (m Δ T) • C = specific heat; • q = heat; • m = mass • ΔT = change in temperature • This equation can be rearranged to solve for heat (q) q= mCΔT

  8. Specific Heat • A 10.0 g sample of iron changes temperature from 25.0C to 50.4 C while releasing 114 joules of heat. Calculate the specific heat of iron.

  9. Example • C= q/ (m∆T) • C=114 J/ (10.0 g x 25.4°C) • C = 0.45 J/g C

  10. Yet another example • 4.50 g of a gold nugget absorbs 276 J of heat. What is the final temperature of the gold if the initial temperature was 25.0 C & the specific heat of the gold is 0.129J/g C

  11. Yet another example • C= q/ (m∆T); rearrange to find • ∆T = q / (C x m) • ∆T = 276 J / (.129 J/g°C x 4.50 g) • T = 475.45C • T = Tf-Ti • 475.45 = Tf-25 • Tf = 500.45 C

More Related