1 / 28

Introduction on J/ y suppression in heavy ion collision

Heavy quark system at finite temperature. Su Houng Lee Yonsei Univ., Korea. Introduction on J/ y suppression in heavy ion collision Progress in QCD calculations: LO and NLO Dissociation due to thermal gluons and quarks. Thank you to : Prof. D. P. Min,

zoie
Download Presentation

Introduction on J/ y suppression in heavy ion collision

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy quark system at finite temperature Su Houng Lee Yonsei Univ., Korea • Introduction on J/y suppression in heavy ion collision • Progress in QCD calculations: LO andNLO • Dissociation due to thermal gluons and quarks Thank you to : Prof. D. P. Min, former collaborators and students present group: K. Ohnishi, K Morita, Y. Park, K. Kim, Y. Heo

  2. 대우재단 지원 핵물리학 심포지움 제 1회 :  1988년 8월 16일  설악산 관광호텔. 김정욱, 노만규, Yabu, Hwang, Kubo,  이현규, 전일동, 김병택, 김형배, 정운혁,  소광섭, 오성담  제 2회 :  1989년 6월 26일 경주 노만규, Scoccola, Yabu, Cheng, Matsui, Kajino, Bonche, Nadeau, 민동필, 이현규, 박병윤, 이강석, 김종찬, 차동욱 제 3회 : 1990년 8월 8일 서울대학교 호암생활관 Yamazaki, Yazaki, Toki, 이수형, 박병윤, 심숙이, 이석준, 김병택 제 4회 : 1991년 7월 1일 서울 남원    Pandharipande, Giraud, Soyeur, Blaizot, Zahed, Hatsuda, Heinz 제 5회 : 1992년 6월 29일  서울대학교 호암 생활관    Kubodera, Laget, Hashimoto. 김정욱, 민동필   제 6회 : 1993년 8월 20일 Gai, Hahn, Ji, Fried, Kang 민동필   제 7회 : 1994년 6월 27일  서울대학교 호암 생활관  van Kolck, Hatsuda, Forte, Karliner, Kugo,  Oh, 이준규, 박병윤 제 8회 : 1995년 7월 17일  제주대학  Holstein, 노만규, 이수형, 이강석, 신상진 제 9회 : 1996년 8월 19일 전남대학교  Baym, Ko, Ji, 이철훈, 김충선, 강주환 제 10회 : 1997년 7월 17일 서울대학교 호암생활관   Brodsky, Carlson, Yamawaki, Burkardt, Mukhopadhyay, Zhitnisky, Kumano  최승호, 최호명, 제 11회 : 1998년 6월 23일  서울대학교 호암 생활관  Burgess, Berges, Robertson, Kubo, Birse, Gadiyak, Yang, 오용석, 홍순태, 김경식, 유순유, 전일동 제 12회 : 1999년 5월 26일 경주   Brodsky, Dalley, Miller Pauli, Kunin, Kochelev, Bakker, Burkardt, Heinzl, Hiller, McCartor, Nakawaki, Morara, Sugihara, Taniguchi 황대성, 현승준, Gubankova, Itoh, Kondo, Csaki, Sannino Carlson, Ji, Kniehi 최종범, 김흥종, 최승호  Beane, 노만규, Ramos, Janik 홍순태, Hayashigaki, Lenz, deForcrand,  Engelhardt 이수형, 송희성  Garvey, McKeown Peng, De Roeck 강주환 제 13회 : 2000년 6월 22일 부산대학교  Hatsuda, Nowak, 노만규, Zahed 2003년 11월 10일부터 14일까지 KIAS에서 "Compact Stars: Quest for New States of Dense Matter" Baym, Bulgac, Bombaci, Drake, Kaplan, Kulkarni, van Kerkwijk, Weber, Blaschke, Kajita, Kubodera, Page, Prakash, Reddy, Sata, Brown, Glendenning, Hatsuda, Hsu, Rajagopal, Sannino, Schaefer, Yamazaki 노만규 박병윤, 권영준, 홍덕기, 박태선, 김수봉, 이창환,

  3. J/y suppression in Heavy Ion collision • 1. 1986: Matsui and Satz J/y suppression • Nuclear and comover suppression • SPS data SPS data 4. Thermal enhancement 5. Lattice shows J/Y survives up to 1.6 Tc (Asakawa, Hatsuda .. ) 6. Preliminary RHIC data RHIC data

  4. Relevant questions in J/y suppression c c c c • Ncc – 10 pair in Au+Au at RHIC • Ti > 300 MeV in RHICl • c+c  g g is very small • J/Y is formed at 1.6 Tc • Y’ is formed at Tc • Dissociation effects • Recombination effect  need to know J/y – parton dissociation

  5. J/y in Quark Gluon Plasma Quenched lattice calculation by Asakawa and Hatsuda using MEM T< 1.6 Tc T> 1.6 Tc J/y peak at 3.1 GeV 2003: Asakawa and Hatsuda claimed J/y will survive up to 1.6 Tc

  6. Theoretical interpretations These will be used throughout this work But result is the same when <r2> is fixed 1. C. H. Lee, G. Brown, M. Rho… : Deeply bound states 2. C. Y. Wong… : Deby screened potential 0 e (GeV) -0.8 Tc 1.6xTc J/Y wave functions at finite T J/Y Binding energy as a function T

  7. Progressin QCD calculations LO and NLO

  8. Basics in Heavy Quark system 1. Heavy quark propagation Perturbative treatment are possible because

  9. 2. System with two heavy quarks Perturbative treatment are possible when

  10. Perturbative treatment are possible when

  11. Historical perspective on Quarkonium Haron interaction in QCD • Peskin (79), Bhanot and Peskin (79) • a) From OPE • b) Binding energy= e0 >> L • Kharzeev and Satz (94,96) , Arleo et.al.(02,04) • a) Rederive, target mass correction • b) Application to J/y physics in HIC

  12. Rederivation of Peskin formula using Bethe-Salpeter equation (Lee,Oh 02) Resum Bound state by Bethe-Salpeter Equation

  13. NR Power counting in Heavy bound state 1. Perturbative part 2. External interaction: OPE

  14. Increasing T LO Amplitude

  15. Exp data from pA Not so large, however, LO QCD result is known to underestimate nucleon absorption cross section Oh, Kim ,SHL 02 s1/2 (GeV)

  16. Moreover, in sQGP, strong coupling (g2) effects are expected near Tc

  17. NLO Amplitude

  18. q1 NLO Amplitude : Collinear divergence when q1=0. Cured by mass factroization

  19. q1 q1 Integration of transverse momentum from zero to scale Q Mass factorization Gluons whose kcos q1 < Q scale, should be included in parton distribution function

  20. NLO Amplitude :

  21. Total cross section for Upsilon by nucleon: NLO vs LO NLO/LO Large higher order corrections Even larger correction for charmonium

  22. Thermal quark and gluon masses of 300 MeV will Reduce the large correction 2. But at finite temperature, thermal masses will regulate the large correction Lessons from NLO calculation 1. Large NLO correction near threshold, due to log terms

  23. NLO NLO F+q  c+c+q

  24. NLO F+g  c+c+g NLO

  25. Result and Summary • We showed that the process q(g)+J/Y c+c+q(g) gives large thermal width (1 GeV) for J/Y at 1.6 Tc  Result depends of wave function or size <r2> • In heavy ion collision, as the initial QGP cools down, J/Y will start forming at 1.6 Tc. However, initially the dissociation from 3 body decay is very large.  J/y dissociation will become smaller only near Tc

  26. Fitted and predicted cc spectrum Coulomb (OGE) + linear scalar conft. potential model blue = expt, red = theory. L*S OGE – L*S conft, T OGE as= 0.5538 b = 0.1422 [GeV2] mc = 1.4834 [GeV] s = 1.0222 [GeV] S*S OGE

More Related