280 likes | 443 Views
“The 16 Sutras”. Examples: 1) 25 2 = 2 X (2+1) / 25 = 625 2) 35 2 = 3 X (3+1) /25 = 3 X 4/ 25 = 1225 3) 135 2 = 13 X 14/25 = 18225. Number Base 14 10 8 10 10 10 97 100 112 100 993 1000
E N D
Examples: 1) 252 = 2 X (2+1) / 25 = 625 2) 352 = 3 X (3+1) /25 = 3 X 4/ 25 = 1225 3) 1352 = 13 X 14/25 = 18225
Number Base 14 10 8 10 10 10 97 100 112 100 993 1000 1011 1000
Example: 23 x 13 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 2 : 6 + 3 : 9 = 299
Example: Divide 1225 by 12. 12 122 5
Example: Divide 1225 by 12. 12 122 5 - 2 ¯¯¯¯¯
Example: Divide 1225 by 12. 12 122 5 - 2 -2 ¯¯¯¯¯ ¯¯¯¯
Example: Divide 1225 by 12. 12 122 5 - 2 -2 ¯¯¯¯ ¯¯¯¯ 10
Example: Divide 1225 by 12. 12 122 5 - 2 -20 ¯¯¯¯¯ ¯¯¯¯ 10
Example: Divide 1225 by 12. 12 122 5 - 2 -20 ¯¯¯¯¯ ¯¯¯¯ 102
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1 Therefore:
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1 Therefore: 1225/12
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1 Therefore: 1225/12 =
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1 Therefore: 1225/12 = 102
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1 Therefore: 1225/12 = 102 Remainder =
Example: Divide 1225 by 12. 12 122 5 - 2 -20 - 4 ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ 102 1 Therefore: 1225/12 = 102 Remainder = 1
Example 2: 5(x+1) = 3(x+1) Solution: ( x + 1 ) x + 1 = 0 gives x = -1
Example : 3x + 7y = 2 4x + 21y = 6 Observe that the y-coefficients are in the ratio 7 : 21 i.e., 1 : 3, which is same as the ratio of independent terms i.e., 2 : 6 i.e., 1 : 3. Hence the other variable x = 0 and 7y = 2 or 21y = 6 gives y = 2 / 7.
Example 1: 45x – 23y = 113 23x – 45y = 91 add them, i.e., ( 45x – 23y ) + ( 23x – 45y ) = 113 + 91 i.e., 68x – 68y = 204 x – y = 3subtract one from other, i.e., ( 45x – 23y ) – ( 23x – 45y ) = 113 – 91 i.e., 22x + 22y = 22 x + y = 1 and repeat the same sutra, we get x = 2 and y = -1
Example 2: x3 + 8x2 + 17x + 10 = 0 We know ( x + 3 )3 = x3 + 9x2 + 27x + 27 So adding on the both sides, the term ( x2 + 10x + 17 ), we get x3 + 8x2 + 17x + x2 + 10x + 17 = x2 + 10x + 17 i.e.,, x3 + 9x2 + 27x + 27 = x2 + 6x + 9 + 4x + 8 i.e.,, ( x + 3 )3 = ( x + 3 )2 + 4 ( x + 3 ) – 4 y3 = y2 + 4y – 4 for y = x + 3 y = 1, 2, -2. • Hence x = -2, -1, -5 .
Example: 123Step 1: Subtract the nearest power of ten from the number: 12 - 10 = 2Step 2: Double this number and add the number being cubed: (2 x 2) + 12 = 16Step 3: Subtract from this number the power of ten from step one: 16 - 10 = 6Step 4: Multiply this number by the answer in step one: 2 x 6 = 12Step 5: Cube the answer in step one: 23 = 8Step 6: Since we're cubing a 2 digit number, add two zeros to the answer in step two: 1600Step 7: Add 1 zero to the answer in step four: 120Step 8: Add the answers in steps seven and eight to the answer in step five: 1600 + 120 + 8 = 1728Thus, 123 = 1728
Example : 3x2 + 7xy + 2y2 + 11xz + 7yz + 6z2. Step (i): Eliminate z and retain x, y; factorize 3x2 + 7xy + 2y2 = (3x + y) (x + 2y) Step (ii): Eliminate y and retain x, z; factorize 3x2 + 11xz + 6z2 = (3x + 2z) (x + 3z) Step (iii): Fill the gaps, the given expression = (3x + y + 2z) (x + 2y + 3z)