1 / 27

“The 16 Sutras”

“The 16 Sutras”. Examples: 1) 25 2  = 2 X (2+1) / 25 = 625 2) 35 2 = 3 X (3+1) /25 = 3 X 4/  25 = 1225 3) 135 2 = 13 X 14/25 = 18225. Number Base 14 10      8 10 10 10 97 100 112 100 993 1000

zoie
Download Presentation

“The 16 Sutras”

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. “The 16 Sutras”

  2. Examples: 1) 252  = 2 X (2+1) / 25 = 625 2) 352 = 3 X (3+1) /25 = 3 X 4/  25 = 1225 3) 1352 = 13 X 14/25 = 18225

  3. Number Base 14 10      8 10 10 10 97 100 112 100 993 1000 1011 1000

  4. Example: 23                               x   13                          ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯                          2 : 6 + 3 : 9  =  299

  5. Example: Divide 1225 by 12.  12         122      5

  6. Example: Divide 1225 by 12.  12         122      5            - 2                    ¯¯¯¯¯    

  7. Example: Divide 1225 by 12.  12         122      5          - 2        -2               ¯¯¯¯¯     ¯¯¯¯    

  8. Example: Divide 1225 by 12.  12         122      5            - 2         -2           ¯¯¯¯     ¯¯¯¯                 10     

  9. Example: Divide 1225 by 12.  12         122      5            - 2         -20              ¯¯¯¯¯     ¯¯¯¯                 10     

  10. Example: Divide 1225 by 12.  12         122      5            - 2         -20              ¯¯¯¯¯     ¯¯¯¯                 102       

  11. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102       

  12. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1

  13. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1 Therefore:

  14. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1 Therefore: 1225/12

  15. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1 Therefore: 1225/12 =

  16. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1 Therefore: 1225/12 = 102

  17. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1 Therefore: 1225/12 = 102 Remainder =

  18. Example: Divide 1225 by 12.  12         122      5            - 2         -20     - 4          ¯¯¯¯¯     ¯¯¯¯¯¯¯¯¯¯                 102      1 Therefore: 1225/12 = 102 Remainder = 1

  19. Example 2:      5(x+1) = 3(x+1) Solution: ( x + 1 )              x + 1 = 0     gives     x = -1

  20. Example :                      3x +  7y = 2                       4x + 21y = 6 Observe that the y-coefficients are in the ratio 7 : 21 i.e., 1 : 3, which is same as the ratio of independent terms i.e., 2 : 6 i.e., 1 : 3. Hence the other variable x = 0 and 7y = 2 or 21y = 6 gives y = 2 / 7.

  21. Example 1:                            45x – 23y = 113                            23x – 45y = 91 add them,                i.e., ( 45x – 23y ) + ( 23x – 45y ) = 113 + 91                i.e., 68x – 68y = 204         x – y = 3subtract one from other,                i.e., ( 45x – 23y ) – ( 23x – 45y ) = 113 – 91                i.e., 22x + 22y = 22           x + y = 1      and repeat the same sutra, we get x = 2 and y = -1

  22. Example 2:     x3 + 8x2 + 17x + 10 = 0         We know ( x + 3 )3 = x3 + 9x2 + 27x + 27       So adding on the both sides, the term ( x2 + 10x + 17 ), we get             x3 + 8x2 + 17x + x2 + 10x + 17 = x2 + 10x + 17     i.e.,, x3 + 9x2 + 27x + 27 = x2 + 6x + 9 + 4x + 8                  i.e.,, ( x + 3 )3 = ( x + 3 )2 + 4 ( x + 3 ) – 4                      y3 = y2 + 4y – 4 for y = x + 3                         y = 1, 2, -2. •     Hence x = -2, -1, -5         .

  23. Example: 123Step 1: Subtract the nearest power of ten from the number: 12 - 10 = 2Step 2: Double this number and add the number being cubed: (2 x 2) + 12 = 16Step 3: Subtract from this number the power of ten from step one: 16 - 10 = 6Step 4: Multiply this number by the answer in step one: 2 x 6 = 12Step 5: Cube the answer in step one: 23 = 8Step 6: Since we're cubing a 2 digit number, add two zeros to the answer in step two: 1600Step 7: Add 1 zero to the answer in step four: 120Step 8: Add the answers in steps seven and eight to the answer in step five: 1600 + 120 + 8 = 1728Thus, 123 = 1728

  24. Example :  3x2 + 7xy + 2y2 + 11xz + 7yz + 6z2. Step (i):   Eliminate z and retain x, y; factorize                3x2 + 7xy + 2y2 = (3x + y) (x + 2y) Step (ii):   Eliminate y and retain x, z; factorize                3x2 + 11xz + 6z2 = (3x + 2z) (x + 3z) Step (iii):   Fill the gaps, the given expression                  = (3x + y + 2z) (x + 2y + 3z)

More Related