1 / 2

300 m

Para hallar la distancia entre dos puntos inaccesibles A y B, fijamos dos puntos C y D tales que CD = 300 m, y medimos los siguientes ángulos: ADB = 25° , BDC = 40° , ACD= 46° y ACB = 32°. A. B. En el triángulo ADC: A = 180° – 65° – 46° = 69°.

zola
Download Presentation

300 m

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Para hallar la distancia entre dos puntos inaccesibles A y B, fijamos dos puntos C y D tales que CD = 300 m, y medimos los siguientes ángulos: ADB = 25° , BDC = 40° , ACD= 46° y ACB = 32° A B En el triángulo ADC: A = 180° – 65° – 46° = 69° Aplicamos el teorema del seno al triángulo ADC para obtener AC. Aplicamos el teorema del seno al triángulo BCD para obtener BC. 320 250 400 460 D C 300 m En el triángulo BCD: B = 180° – 40° – 78° = 62°

  2. c b = a = A B 291,24 m 218,40 m 320 250 400 460 Aplicamos el teorema del coseno al triángulo ABC para obtener AB. D C 300 m La longitud AB es: 156,96 m

More Related