140 likes | 564 Views
Identification of partial discharge signals . Marcus de Paula University of Wisconsin – Madison 12/13/2013. Background. Partial Discharges: Localized dielectric breakdown of a small portion of a solid or fluid electrical insulation system under high voltage stress ;
E N D
Identification of partial discharge signals Marcus de Paula University of Wisconsin – Madison 12/13/2013
Background • Partial Discharges: • Localized dielectric breakdown of a small portion of a solid or fluid electrical insulation system under high voltage stress; • Can lead to loss of insulating capacity and electrical system failure.
Background • Filtering problem: • Have the frequency spectrum close to the noise spectrum; • It requires more elaborate filtering method.
Goal • Use the wavelet transform and a spatially-adaptive coefficient selection procedure to explore the localized processing capabilities of the WT as a way to improve the separation of coefficients related to the signal and noise.
Goal • The process basically consists of 6 steps: • 1. Decomposition of the signal into 6 levels using WT. • 2. Extraction of each decomposition. • 3. Construction of the Maxima Lines. • 4. CLASSIFY lines associated with the signal or noise. • 5. Delete rows associated with noise. • 6. Rebuild signal using the remaining lines.
Training Data • Source: • Example:
SVM classifier • Harmonic noise test: • Confusion matrix • Classification rate • Pulse noise test: • Confusion matrix • Classification rate • Real sample test: • Confusion matrix • Classification rate
SVM classifier • Results:
Future work • Use the MLP classifier; • Compare the results; • Analyze differences.
References • [1] MOTA, H., Sistema de aquisição e tratamento de dados para monitoramento e diagnóstico de equipamentos elétricos pelo método das descargas parciais (Acquisition system and data processing for monitoringanddiagnosticofelectricalequipmentbythemethodofpartialdischarges). Universidade Federal de Minas Gerais (UFMG), ElectricalEngineeringGraduateProgram. Belo Horizonte, Minas Gerais, Brazil, Marchof 2001. • [2] MOTA, H., Processamento de sinais de descargas parciais em tempo real com base em wavelets e seleção de coeficientes adaptativa espacialmente (Signalprocessingofpartialdischarges in real time basedonwaveletsandselectionofspatiallyadaptivecoefficients). Universidade Federal de Minas Gerais (UFMG), ElectricalEngineeringGraduateProgram. Belo Horizonte, Minas Gerais, Brazil, Novemberof 2011.