1 / 15

Pre Calculus Chapter 7 Outline

Pre Calculus Chapter 7 Outline. A Presentation By Cody Lee & Robyn Bursch. Section 7.1 : Inverse Sine, Cosine, and Tangent Functions. y= sin x means x= sin y where -1 ≤ x ≤ 1, - π /2 ≤ y ≤ π /2 y= cos x means x= cos y where -1 ≤ x ≤ 1, 0 ≤ y ≤ π

zubin
Download Presentation

Pre Calculus Chapter 7 Outline

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pre CalculusChapter 7 Outline A Presentation By Cody Lee & Robyn Bursch

  2. Section 7.1 : Inverse Sine, Cosine, and Tangent Functions • y= sin x means x= sin y where -1 ≤ x ≤ 1, - π/2 ≤ y ≤ π/2 • y= cos x means x= cos y where -1 ≤ x ≤ 1, 0 ≤ y ≤ π • y= tan x means x= tan y where -∞ < x < ∞, 0 < y < π • y= sec x means x= sec y where |x|≥1, 0 ≤ y ≤ π, y≠ π/2 • y= csc x means x= csc y where |x|≥1, - π/2 ≤ y ≤ π/2, y≠0 • y= cot x means x= cot y where -∞ < x < ∞, 0 < y < π See pg 489 for formulas, pg 429-442 for detailed explanation -1 -1 -1 -1 -1 -1

  3. 7.1 Continued

  4. Section 7.2 : Inverse Trigonometric Functions (Continued)

  5. Ex: Find the exact value of: tan [cos (-1/3)] -1 • tan [cos (-1/3)] • Ѳ= cos (-1/3), so cos Ѳ = -1/3 and since cos Ѳ < O, Ѳ lies in quadrant II • Since cos is x/r, we let x=-1 and r=3 • Use pythagoream theorem to find y • (-1)²+ y² = 3² » 9-1=y² » y²=8 » y=2√2 • Since we have y=2√2 and r= 3, tan [cos (-1/3)] = tan Ѳ= (2√2)/-1 = - 2√2 -1 -1

  6. Section 7.3 : Trigonometric Identities

  7. Ex: Techniques to Simplify Trigonometric Expressions • Show that cosѲ / 1+ sin Ѳ = 1-sin Ѳ /cosѲ by multiplying the numerator and denominator by 1-sin • Solution: cosѲ/ 1+ sin Ѳ = cosѲ/ 1+ sin Ѳ x 1-sin Ѳ/ 1-sin Ѳ • = cosѲ (1-sin Ѳ)/1-sin² Ѳ • = cosѲ (1-sin Ѳ)/cos² Ѳ = 1-sin Ѳ/ cos Ѳ

  8. Section 7.4 : Sum and Difference Formulas

  9. Ex: Using Sum Formula to Find Exact Values • Find the exact value of cos(75°) • Solution: since 75° = 45°+30°, we use the formula for cos(α+β) • Cos 75° = (45°+30°) = cos 45°cos 30° - sin 45°sin 30° • = (√2/2)(√3/2)- (√2/2)( ½ ) • = ¼(√6-√2)

  10. Section 7.5 : Double-Angle Formulas

  11. 7.5: Double-Angle using Squares

  12. Section 7.5: Half-Angle Formulas

  13. Ex: Finding Exact Values Using Double-Angle • If sin Ѳ= 3/5 and π/2 < Ѳ < π, find the exact value of cos (2Ѳ) • Solution: because we are given sin Ѳ= 3/5, we can use the formula cos (2Ѳ)= 1 - 2sin²Ѳ. • cos (2Ѳ)= 1- 2(3/5)² » 1- 2(9/25) » 1- 18/25 • cos (2Ѳ)= 7/25

  14. Ex: Finding Exact Values Using Half-Angle Formulas • Use a half-angle formula to find the exact value of: sin(-15°) • Solution: We use the fact that sin(-15°)= -sin(15°) and 15°= 30°/2 • Use the formula sin α/2= ± √(1 - cos α/2) • sin(-15°) = -sin(30°/2) = - √(1 - cos30°/2) » - √(1 –(√3/2)/2) » 2 (- √(1 –(√3/2)/2) » (- √(2 –√3)/4) • = - √(2 –√3)/2

  15. Thanks for Watching! Good Luck on the Final…

More Related