1 / 24

Smart Traffic Signs

Smart Traffic Signs. I can communicate!. By: Salil S. Gokhale Preston DeFrancis. Smart Traffic Signs. Designing a Smart Traffic Sign Demonstrating a Working Prototype Enhancing the Concept. Think!. Designing a Smart Traffic Sign. 1. Inclement weather 2. Poor or infrequent placement

zudora
Download Presentation

Smart Traffic Signs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Smart Traffic Signs I can communicate! By: Salil S. Gokhale Preston DeFrancis

  2. Smart Traffic Signs • Designing a Smart Traffic Sign • Demonstrating a Working Prototype • Enhancing the Concept Think!

  3. Designing a Smart Traffic Sign 1. Inclement weather 2. Poor or infrequent placement 3. Stolen for dorm room decoration General problem – Road signs do not always convey information effectively

  4. Designing a Smart Traffic Sign Interstate Traffic Sign Problem Bridge Structure Interstate Signs Cost about $300,000!

  5. Designing a Smart Traffic Sign Solution: a “Smart” Traffic Sign • Transmits information over a wireless link • Replaces or augments traditional road signs • Delivers information directly inside a motor vehicle

  6. Designing a Smart Traffic Sign Goal: Deliver a prototype of a Smart Traffic Sign that • Uses a 433.9.2 MHz radio frequency link • Operates on power supplies available in cars(receiver) and near interstate signs (transmitter) • Outputs information to driver on an illuminated LCD screen

  7. Designing a Smart Traffic Sign System-level architecture Transmitter: Flash EEPROM PIC on the modules Stamp PIC Receiver: LCD display Flash EEPROM PIC on the modules Stamp PIC Transmitter sends data serially to the receiver

  8. Designing a Smart Traffic Sign Software components for Modules: Transmitter: - Encodes information - Contains Protocol Receiver: - Decodes Information - Contains protocol conversion program - Includes LCD driver

  9. Designing a Smart Traffic Sign Power Supplies: • Receiver: Plugs into +12V DC supply of car’s cigarette lighter • Transmitter: Uses 120 V AC supply of urban bridge structure signs

  10. Designing a Smart Traffic Sign Summary of Specifications:

  11. Demonstrating a Working Prototype Packaging the Modules: Receiver: Small, user-friendly package that attaches with Velcro to car’s dashboard Transmitter: Weatherproof package enclosing power supply and module

  12. The First Car! The 1995 Dodge Neon was the first car to have the Smart Traffic Sign installed in it

  13. Demonstrating a Working Prototype Testing the modules in heavy snow Approximate distance of operation: 300 ft.

  14. Demonstrating a Working Prototype Testing the modules in clear weather Approximate distance of operation: 310 ft

  15. Demonstrating a Working Prototype • Conclusions for test: • Weather conditions do not significantly impair performance • Current minimum range is enough to transmit 3072 characters at 9600 baud, more than enough for the demonstration

  16. Demonstrating a Prototype

  17. Demonstrating a Prototype • Summary of Prototype: • Transmitter and receiver housed in appropriate packages • Field tests verified the meeting of project goals • Demonstration validated the real-world operation of the prototype

  18. Enhancing the Concept A second generation prototype will: • Provide more range: increased receiver sensitivity allows better range from same transmitter power • Decrease size of units: new, smaller modules could make units more attractive

  19. Enhancing the Concept A second generation prototype will: • Use more sophisticated modulation: improve resistance to noise • Provide antenna flexibility: Many types of antenna could provide directional transmission

  20. Enhancing a Concept Further Improvements: Lane Specificity - provide lane-specific information, perhaps using a buried antenna User interface - Determine best method of getting information to driver

  21. Enhancing the Concept Work has begun on the second generation model

  22. Enhancing the Concept Summary of Recommendations: • Build a second-generation prototype for increased performance • Develop a method of providing lane specific information • Research most effective user interfaces

  23. Acknowledgements Professor Frank Merat, Project Technical Advisor Professor Bob Gura, Project management Advisor Professor Sreenath, Course Instructor Dr. R.L. Mullen, Civil Engineering Advisor Brian Leech Ted Square

  24. Smart Traffic Signs I can communicate! Demonstration!

More Related