1 / 54

Spitzer 24 um image: l ~ 358 - 359

Spitzer 24 um image: l ~ 358 - 359. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C. 24  m. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C. 70  m. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C. 160  m.

zurina
Download Presentation

Spitzer 24 um image: l ~ 358 - 359

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spitzer 24 um image: l ~ 358 - 359

  2. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 24 m

  3. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 70 m

  4. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 160 m

  5. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 250 m

  6. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 350 m

  7. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 500 m

  8. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 1100 m

  9. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 20 cm

  10. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 24 m

  11. Bania’s Clump 2 l = 1.3 Sgr B2 / B1 Sgr A Sgr C 70 m

  12. 24 m 350 m 2/3 gas, dust: + longitudes 2/3 24 m sources: - longitudes

  13. Galactic Center: 8 m Sgr B2 Sgr A (CND)

  14. Galactic Center Bubble: 24m

  15. 8 m70 m350 m

  16. Galactic Center: 20 cm

  17. Tdust(Rome algorithm)

  18. N(H2) from dust (Cara Battersby)

  19. Galactic Center Bubble => Sofue-Handa Lobe => Fermi-LAT Bubble ? Finkbeiner et al. (2010) Sofue- Handa Lobe … or Sco-Cen superbubble 150 pc from Sun? 3.5 cm (GBT) 2 deg. Law et al. (2008)

  20. Sgr A & Circum Nuclear Ring (CNR): 70 um, 160 um, 350 um (SHARC/CSO) Black Hole HCN (1-0) + P 50 km/s cloud20 km/s cloud Feeding star formation in the CNR? Sgr A cluster L-band: (Viehmann 06)

  21. Summary & Review: Collisional Processes & cross-sections: neutral-neutral:  = constant Rate = nV ~ T1/2 charge-neutral:  = c V-1 Rate = indep of T charge-charge:  = c V-4 Rate = nV ~ T-1/2 Overview of Heating & Cooling processes Radiative decay rates: A, B coefficients Molecular transitions Electronic, vibrational, rotational, etc. CO, high-dipole moment molecules in the sub-mm to cm Dust emission, absorption Excitation and and radiative transfer Next: Heating <=> cooling (see Dalgarno & McCray 1972, ARAA, 10, 375) n, T & the two and three-phase ISM models

  22. Total ISM Pressure High  Magnetic P low  Stable Cold phase Forbidden: T ~ 270 - 6000 0.8 - 7 cm-3 Stable Warm phase Two-Phase ISM model: Field, Goldsmith, Habing 1969, ApJL, 155, L149 Cox, D. P. 2005, ARA&A, 43, 337 Warm Phase: hot X-ray bubbles (HIM), HII (ELD HII + HII regions) Cold Phase: warm (T > 103) HI, cold HI (T < 103) , Molecular clouds • Balance between • (Heating) & Cooling => T(n) P / k = n * T(n)

  23. Total cooling rate: H becomes ionized Recombinations: H+ => HI UV line of metals X-ray emission: Metal lines, f-f Fine structure cooling” OIII, C+, NII, OI, … Depends on Fractional ionization ne/nH

  24. Heating • Ionizing: E > 13.6 eV FUV : HII regions • Soft UV: E < 13.6 eV EUV : HI regions, PDR, • cloud surfaces; AV < few mag. • Photoelectric effect HI • H2 destruction followed by re-formation on grains HI • Visual and IR photons (AV ~ 1 - 10 mag.) H2 • In dense gas (n > 105 cm-3) warm grains near luminous sources • heat the gas. • X-rays (AV > few mag.) H2 • MHD effects (magnetic reconnection) HI,H2 • Compression (shocks etc.) HII regions,HI,H2 • Cosmic rays H2

  25. Heating • Ionizing UV (“extreme” UV or EUV): E > 13.6 eV • EUV (HII regions) • does not penetrate neutral HI or H2 • Soft UV (“far” UV or FUV): 6 eV < E < 13.6 eV • FUV (HI regions, PDRs cloud surfaces) • penetrates to AV ~ few • Cosmic-rays • > MeV protons. Penetrate to AV ~ 10 to 100 • X-rays • Penetrates to AV > 10, low flux • produced by SN, SNR, young stars (Lx ~ 10-4 Lo) • MHD effects • B-reconnection, ambipolar diffusion (ion-neutral Drift) • Compression by shock waves • External sources: SNR, supershells, ionization fronts • Internal sources. Decay of turbulence, outflows

  26. Interstellar Radiation fields

  27. Free-free radiation from ionized H

  28. Cosmic Ray flux & Ionization Rates

  29. Heating • (Dalgarno & McCray 1972, ARA&A 10,375) • Impacts of FUV revisited: • H2 dissociation => reformation on grains • E(H2)binding ~ 4.5 eV • A fraction of the release energy is kinetic E of • ejected H2. • E(KE) ~ 4.5eV - (H2) •  = grain surface “work function”~ 0.5 to 2 eV • Photo-electric effect on grains • Epe = h - (f + V) • f = grain photoelectric “work function” ~ 6 eV • V= electrostatic potential of grain • nPE = 10-24nG/Go (erg s-1 cm-3) e= 0.05 , heating efficiency • Go = 1.6 x 10-3 (erg s-1 cm-2 ) :FUV “Habing field” • - Grain charging limits PE heating! • (deJong 1977, A&A, 55, 137)

  30. Heating • Ionization: f(H) = 13.6 eV ; f(C) = 11.6 eV ; f(O) = 13.6 eV • f(Na) = 5.1 eV ; f(K) = 4.3 eV • E = hn – f ~ 1 – 10 eV for H near an O star • ~few eV for C+ near an A or B star • Cosmic Ray ionization Rate: (E > 0.3 MeV), low E dominate • x = 1 -- 30 x 10-17s-1(in GMCs: x10 higher?) • Heating rate: nG = x E (E,x) nH ~ 1 - 30 x 10-28 n (erg s-1 cm-3) Dominates in shielded (from UV) regions: eg. Molecular clouds

  31. Heating and Cooling in the ISM: - Cooling: Recombination, collisional excitation: => photons free-free, free-bound, bound-bound transitions Continuum emission from plasma Grains (IR => mm) “grey-body” S = B(T) (/0)  Transiently heated small grains Line emission from ions, atoms, molecules Band emission from small grains (PAHs)

  32. Cooling in the ISM: • Cooling depends on phase: • GMCs: @ n < 104 cm-3: • CO (m ~ 0.1 debye), dust • @ n > 104 cm-3:`High dipole moment’ molecules • HCN, HCO+, CS, … (m > 0.2 debye) , dust • cold HI: T ~ 100 K • CII (158 mm) E = 92 K n < ncrit ~ 3,000 cm-3 • OI (63 mm) E = 228 K • ne ~ n(CII) ~ 3 x 10-4 nH (But, C can be depleted) • warm HI: T > 103 K • OI (63 mm) E = 228 K, Si II, … • Ionized: T ~ 104 K • f-f: Lff = 1.4x10-27 T 0.5 ne(n H+ + n He+ + n He++ ) erg s-1 cm-3 • b-f, b-b: lines, Lyman a, 2eV forbidden lines of [OIII], [SII], …

  33. HI 21 cm Dominant line in WNM

  34. CII 157.74m Dominant coolant in WNM

  35. Most important Coolants in warm HI clouds: Mid-IR <=> thermal IR

  36. Cooling of HI phases by various species: • Notes: • Collisional excitation • of upper upper state • Radiative decay - Characteristic T set by E of transition • Cooling rate depends on • abundance of species • times density:  [Xi * n(H)] * n(H) = Xi * n(H)2

  37. Cooling Rates: WNM (warm neutral medium) CNM (cold neutral medium)

  38. Most important Coolants in GMCs and HI clouds: FIR & sub-mm

  39. Linear Molecule: • Carbon Monoxide (CO) • Tracer of H2 • molecular clouds • - Low density gas tracer • n(H2) > 100 cm-3

  40. Total cooling rate by CO at 10 and 20 K: (GMCs) (Goldsmith & Langer 1978):

  41. Review of Molecular Transitions (rot, vib.) Molecule geometry - effects spectrum Rotational states: mm / sub-mm Linear (CO): - rotation ladder E ~ hB J(J+1) Symmetric top (NH3 = ammonia): - Complex J, K ladders Asymmetric top (H2O = water) - Nearly random forest of lines Vibrational states: near-IR / mid-IR Quasi harmonic oscillator

  42. Symmetric top: Ammonia (NH3) 22=>23 GHz (1.3 cm) inversion transitions: - Thermometer of ISM dense molecular clouds - Dense gas tracer n(H2) > 104 cm-3

  43. Ro-Vibration spectra: CO, H2, HCN, PAHs, …. - Coolant of warm ISM 100 to 10,000 K gas S => J = 2 P => J = 1 Q => J = 0 R => J = -1 O => J = -2 Ex: H2 S(1) at 2.1218 m

  44. Asymmetric top: Water (H2O) 22=>23 GHz (1.3 cm) - Coolant of ISM dens molecular clouds - 22 GHz Maser: Dense gas tracer n(H2) > 1010 cm-3

  45. Total cooling rate: H becomes ionized Recombinations: H+ => HI UV line of metals X-ray emission: Metal lines, f-f Fine structure cooling” OIII, C+, NII, OI, … Depends on Fractional ionization ne/nH

  46. Total ISM Pressure High  low  Stable Cold phase Stable Warm phase Two-Phase ISM model: Cox, D. P. 2005, ARA&A, 43, 337 Warm Phase: hot X-ray bubbles (HIM), HII (ELD HII + HII regions) Cold Phase: warm (T > 103) HI, cold HI (T < 103) , Molecular clouds • Balance between • (Heating) & Cooling => T(n) P / k = n * T(n) Magnetic P

  47. Cox, D. P. 2005, ARA&A, 43, 337

  48. Galactic Ecology: Cloud formation Powered by spiral arms ? Gravo-thermal Instability ? Super-bubbles ?

  49. Galactic Ecology:Star Formation & the Interstellar Medium

  50. A (very) useful Website: Jinhua He Yunnan Astronomical Observatory Chinese Academy of Sciences http://www.ynao.ac.cn/~jinhuahe/index.html CO and mass determination: http://www.ynao.ac.cn/~jinhuahe/know_base/astro_objects/sfr.htm#formula_co_mass

More Related