1 / 37

SPENVIS Integration of Mulassis

SPENVIS Integration of Mulassis. H.D.R. Evans Space Environments and Effects Section TEC-EES. What is Mulassis? What can it Do?. What is Mulassis : A 1-D geometrical Monte-Carlo application Based on the Geant4 toolkit Simple, easy to use. What can it Do?

azia
Download Presentation

SPENVIS Integration of Mulassis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SPENVIS Integration of Mulassis H.D.R. Evans Space Environments and Effects Section TEC-EES

  2. What is Mulassis? What can it Do? What is Mulassis: • A 1-D geometrical Monte-Carlo application • Based on the Geant4 toolkit • Simple, easy to use. What can it Do? • Simulates energetic particle interactions in 1-D geometries (slab/sphere) • Includes physical models and material properties of Geant4. • Calculates total dose, NIEL, shielded fluences, PHS, Dose-Equivalent • Can be used determine dose, c.f. SHIELDOSE, but for shields other than Aluminium. SPENVIS Integration of Mulassis - SPENVIS Workshop

  3. Spenvis/Local Version • Can run via SPENVIS interface • Easy to use, simplified inputs • Can directly include radiation environment spectra • Can download from REAT server, install and run as a standalone application • Can run simulations with more events • Greater flexibility in specifying input parameters. • No network connection required • Useful for parametric analyses SPENVIS Integration of Mulassis - SPENVIS Workshop

  4. Spenvis/Mulassis:http://www.spenvis.oma.be/spenvis/ • Accessed via the SPENVIS Server. • Provides a series of Web pages to set up a simulation • Geometry definition • Particle source definition • Physics to include in simulation • Novice user has simpler options • Advanced user can set production cuts (by region), selection of physics models • Output analysis specification (one type per run, which simplifies the interface) • Plotting of outputs • Provides the G4MAC file that can be used directly in a local Mulassis run. • Caveat: The space environment spectra vary by several orders of magnitude over their energy range -> leads to oversampling of non-effectual low-energy particles to the detriment of high energy ones; energy biasing of spectra would be very useful, but is still to be implemented. SPENVIS Integration of Mulassis - SPENVIS Workshop

  5. Standalone Mulassis • Download it from http://reat.space.qinetiq.com/mulassis/mulassis.htm • Linux and Win32 binary versions available. (Win32 split into two install wizards: G4data and Mulassis) • Statically linked Linux version is available – saves installing Geant4 and rebuilding Mulassis – should run on most Linux boxes – does not include OpenGL. • Provides more functionality and flexibility than available with SPENVIS, e.g. energy/angular biasing of GPS particle source. SPENVIS Integration of Mulassis - SPENVIS Workshop

  6. Geometry Specifications • Default – SHIELDOSE Slab with layers commensurate with SD shielding thicknesses • Planar Slab • Spherical Shell SPENVIS Integration of Mulassis - SPENVIS Workshop

  7. Geometry Specification • 1-D geometries used: Slab/Sphere:/geometry/layer/shape [slab|sphere] • Layers specified by:/geometry/layer/add <layerNo> <Material> <colour> <thick> <thick_units>/geometry/layer/add 0 Aluminium 1 4.0 mm/geometry/layer/add 1 Silicon 2 50 mum • Other commands include: • /geometry/layer/delete <layerNo> • /geometry/layer/list SPENVIS Integration of Mulassis - SPENVIS Workshop

  8. SPENVIS Geometry Interface SPENVIS Integration of Mulassis - SPENVIS Workshop

  9. Material Specification/geometry/material • Predefined Materials: • Vacuum • Air • Aluminium • Silicon • Adding new materials: • /geometry/material/add <Name> <Chem. Formula> <density g/cm3> • /geometry/material/add fused_quartz Si-O2 2.200E+00 SPENVIS Integration of Mulassis - SPENVIS Workshop

  10. SPENVIS Materials Interface SPENVIS Integration of Mulassis - SPENVIS Workshop

  11. Incident Particle Specification • Easiest: Use SPENVIS to set up the General Particle Source (GPS) macros. • Establish particle type:/gps/particle [ion|proton|neutron|e-|…] • Establish particle source shape (point source) • Establish angular distribution (isotropic -> cosine law)/gps/ang/type cos • Establish particle spectrum (mono, data, eEnergy, …), Emin, Emax • Optional: • Energy Biasing • Angular Biasing • Etc. • See the GPS documentation SPENVIS Integration of Mulassis - SPENVIS Workshop

  12. Normalisation Factor • What is it? • It’s a factor to scale the Mulassis outputs to the environment -> to provide the real dose/fluence. • Total number of environmental particles in simulation energy range that would impact per cm2. • E.g. NF = ¼ [Flux(>10 MeV) – Flux(>100 MeV)] • New version of SPENVIS calculates this automatically from environment spectra. SPENVIS Integration of Mulassis - SPENVIS Workshop

  13. Spenvis Source Particles SPENVIS Integration of Mulassis - SPENVIS Workshop

  14. Spenvis Source Particles SPENVIS Integration of Mulassis - SPENVIS Workshop

  15. Physics to include/phys/scenario <scenario> • Electro-Magnetic /“Lepton-gamma transport” (em) • Low Energy Electro-Magnetic (leem) • Hadrons (hadron) • Low Energy Neutrons (+/- ln) • Binary Cascades (binary) • For Example, for hadron AND electro-Magnetic but NO low energy neutrons: /phys/scenario hadron+em-ln See Mulassis User Manual for more documentation SPENVIS Integration of Mulassis - SPENVIS Workshop

  16. SPENVIS Physical Models SPENVIS Integration of Mulassis - SPENVIS Workshop

  17. Analysis Types • Fluence – shielded particle spectra • Dose – Total dose in layer/shell • Dose Equivalent: ICRP-60 Q(L) definition • Non-Ionising Energy Loss (NIEL) Dose in layer interface • Pulse Height Spectrum (PHS) SPENVIS Integration of Mulassis - SPENVIS Workshop

  18. Fluence Analysis • Calculation of the shielded flux spectrum for a particle. • This is the number of particles crossing a layer boundary. • Data is the number of particles counted per energy bin -> divide by the bin width to get the differential spectrum. SPENVIS Integration of Mulassis - SPENVIS Workshop

  19. SPENVIS Fluence Analysis SPENVIS Integration of Mulassis - SPENVIS Workshop

  20. Dose Analysis • Calculates the total energy deposited in a layer. • Numerous units available: MeV, Rads, Gy, etc. • Can be compared to SHIELDOSE outputs : (60 day GTO Trapped proton spectrum, 2 mm Al. shield, Si target) • Mulassis: 1711 ± 427 Rads • SD-2: 1880 Rads SPENVIS Integration of Mulassis - SPENVIS Workshop

  21. SPENVIS Dose Analysis SPENVIS Integration of Mulassis - SPENVIS Workshop

  22. SPENVIS Dose Analysis SPENVIS Integration of Mulassis - SPENVIS Workshop

  23. NIEL Analysis • Uses various NIEL curves to calculate the NIEL in an interface between two layers from the Fluence analysis. • Limited to NIEL analyses for specific curves: • SPENVIS/JPL proton curve • CERN/ROSE curves for protons, electrons, neutrons, pions • SAVANT/NRL curves for protons, electrons & neutrons in Silicon, GaAs, and InP (c.f. S. Messenger presentation yesterday). • Can now set NIEL curve by layer. • This is unlike the DOSE analysis, which calculates the total energy deposited in the layer. • For thin targets, this should be adequate. SPENVIS Integration of Mulassis - SPENVIS Workshop

  24. SPENVIS NIEL Analysis SPENVIS Integration of Mulassis - SPENVIS Workshop

  25. PHS Analysis • A “cross” between the dose and fluence analysis: it provides the number of particles that deposit a specific energy in an energy bin. • Used to predict the energy deposited spectra in, for example a silicon detector. SPENVIS Integration of Mulassis - SPENVIS Workshop

  26. SPENVIS PHS Analysis SPENVIS Integration of Mulassis - SPENVIS Workshop

  27. SPENVIS PHS Analysis SPENVIS Integration of Mulassis - SPENVIS Workshop

  28. Dose Equivalent Analysis • Not yet implemented in SPENVIS • Uses ICRP-60 Q(L) function to calculate Dose Equivalent • Deviates from standard for H*(d) due to geometry simplifications: H(d) in Mulassis is calculated for the whole spherical shell, not just the solid angle along a particular direction. Pelliccioni, M. “Overview of Fluence-to-Effective Dose and Fluence-to-Ambient Dose Equivalent Conversion Coefficients for High Energy Radiation Calculated Using the FLUKA Code”, Radiat. Prot. Dosim. 88(4), 279-297 (2000) SPENVIS Integration of Mulassis - SPENVIS Workshop

  29. Visualisation • Most useful are: • OpenGL: X windows visualisation on the screen as simulation runs. • VRML2FILE: visualisation within VRML viewer (Cortona plugin, vrmlview for Linux)* • DAWN: with the dawn application, can produce postscript files. • WIRED • Static binary version does not support OpenGL. • Only the first 100 events will be displayed. *my preferences SPENVIS Integration of Mulassis - SPENVIS Workshop

  30. Output Files • Mulassis G4 Macro File • Report file • Contains information about run • Dose and NIEL results • Comma Separated Value (CSV) file • In SPENVIS CSV format • Contains outputs from all analysis modules (dose, PHS, Fluence and NIEL) • Program output/log file SPENVIS Integration of Mulassis - SPENVIS Workshop

  31. Spenvis Output Page SPENVIS Integration of Mulassis - SPENVIS Workshop

  32. SPENVIS Mulassis Macro /gps/hist/point 5.000E+00 5.061E+04 /gps/hist/point 6.000E+00 2.858E+04 /gps/hist/point 7.000E+00 1.771E+04 /gps/hist/point 1.000E+01 6.902E+03 /gps/hist/point 1.500E+01 1.603E+03 /gps/hist/point 2.000E+01 4.551E+02 /gps/hist/point 3.000E+01 9.342E+01 /gps/hist/point 4.000E+01 3.074E+01 /gps/hist/point 5.000E+01 1.888E+01 /gps/hist/point 6.000E+01 1.085E+01 /gps/hist/point 7.000E+01 8.428E+00 /gps/hist/point 1.000E+02 5.459E+00 /gps/hist/point 1.500E+02 2.826E+00 /gps/hist/point 2.000E+02 1.595E+00 /gps/hist/point 3.000E+02 5.442E-01 /gps/hist/point 4.000E+02 3.608E-02 /gps/hist/inter Lin /gps/ang/type cos /gps/ang/mintheta 0.000E+00 deg /gps/ang/maxtheta 9.000E+01 deg /vis/open VRML2FILE /vis/scene/create /vis/viewer/set/style wireframe /vis/viewer/set/viewpointThetaPhi 90. 180. /vis/drawVolume /vis/scene/endOfEventAction accumulate /tracking/storeTrajectory 1 /event/printModulo 1000 /run/cputime 6.000E+02 /run/beamOn 10000 # SPENVIS generated macrofile for MULASSIS /geometry/layer/delete 0 /geometry/material/add ICRU_Tissue H5398-C498-N100-O2566 1.000E+00 /geometry/layer/shape slab /geometry/layer/add 0 Aluminium 1 2.000E+00 mm /geometry/layer/add 1 Silicon 2 1.000E+01 mum /geometry/layer/add 2 Silicon 1 1.000E+01 mum /geometry/layer/add 3 Silicon 1 1.000E+01 mum /geometry/layer/add 4 Silicon 1 1.000E+01 mum /analysis/file spenvis /analysis/normalise 8.188E+13 cm2 /analysis/phs/add 2 /analysis/phs/add 3 /analysis/phs/add 4 /analysis/phs/energy/default /geometry/update /phys/scenario em /gps/particle proton /gps/ene/type Arb /gps/hist/type arb /gps/ene/min 1.000E-01 MeV /gps/ene/max 4.000E+02 MeV /gps/hist/point 1.000E-01 3.056E+08 /gps/hist/point 1.500E-01 2.336E+08 /gps/hist/point 2.000E-01 1.724E+08 /gps/hist/point 3.000E-01 1.012E+08 /gps/hist/point 4.000E-01 6.619E+07 /gps/hist/point 5.000E-01 4.443E+07 /gps/hist/point 6.000E-01 3.149E+07 /gps/hist/point 7.000E-01 2.327E+07 /gps/hist/point 1.000E+00 1.153E+07 /gps/hist/point 1.500E+00 3.808E+06 /gps/hist/point 2.000E+00 1.474E+06 /gps/hist/point 3.000E+00 3.337E+05 /gps/hist/point 4.000E+00 1.176E+05 SPENVIS Integration of Mulassis - SPENVIS Workshop

  33. CSV File Format • SPENVIS Comma Separated Value (CSV) format:http://spenvis.oma.be/spenvis/help/models/outputs.html#UNIFMT • Can be directly imported into Excel • Header lines/Meta Data • “navigation info”: # variable, header lines, data lines, … • Plotting annotation • Data variable descriptions: name, units, dimensions, description • Data in columns SPENVIS Integration of Mulassis - SPENVIS Workshop

  34. Misc. • SPENVIS – download output files directly into Excel • Use SPENVIS to set up simulation and then tailor the macro file to your own ends. • Material “calculator” Excel Spreadsheet (G. Santin) • CREME-86 Excel implementation of M1 environment to provide GCR Spectra • “help” command in command line version. SPENVIS Integration of Mulassis - SPENVIS Workshop

  35. Future Activities/Desires: • Provide GCR spectra via SPENVIS/MULASSIS “Source Particles” page. • Include physics to handle high energy ions (E>10 GeV/n). • Provide energy biasing of spectra. • Include Köln NIEL developments to calculate NIEL directly during simulation. • Solar Cells: • Include SAVANT Solar Cell degradation calculation as an analysis output- not just the NIEL damage output. • Implement a simplified interface for solar cell engineer in SPENVIS • Include Nuclear Decay Model. • Implement Dose Equivalent Analysis in SPENVIS. SPENVIS Integration of Mulassis - SPENVIS Workshop

  36. Questions? SPENVIS Integration of Mulassis - SPENVIS Workshop

  37. Demonstration • Spenvis simulation • Command line (local) simulation • Excel spreadsheets: • Normalisation factor • Material properties • CREME M1 spectra SPENVIS Integration of Mulassis - SPENVIS Workshop

More Related