1 / 52

Kryterium Nyquista

Cecha charakterystyczna kryterium Nyquist’a. Analiza stabilności systemu zamkniętego z ujemnym sprzężeniem zwrotnym prowadzona jest w oparciu charakterystyki częstotliwościowe (wykres Nyquista, wykresy Bode’a) transmitancji systemu otwartego. Kryterium Nyquista.

Download Presentation

Kryterium Nyquista

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cecha charakterystyczna kryterium Nyquist’a Analiza stabilności systemu zamkniętego z ujemnym sprzężeniem zwrotnym prowadzona jest w oparciu charakterystyki częstotliwościowe (wykres Nyquista, wykresy Bode’a) transmitancji systemu otwartego Kryterium Nyquista Harry Nyquist (ur. 7 lutego 1889r., Nilsby, Szwecja, zm. 4 kwietnia 1976r. Harlingen, Teksas), elektrotechnik amerykański pochodzenia szwedzkiego. Wieloletni pracownik Bell Telephone Laboratories. Twórca kryterium do badania stabilności układów sterowania. Prowadził prace z automatyki. /Wikipedia/

  2. Transmitancja układu otwartego Transmitancja układu zamkniętego Równanie charakterystyczne układu zamkniętego Równanie charakterystyczne układu otwartego stabilność układu otwartego stabilność układu zamkniętego

  3. Niech transmitancja układu otwartego będzie przedstawiona w postaci ułamka wielomianów zmiennej zespolonej s (1) Założymy, że 1. Wielomiany Lo(s) i Mo(s) są względnie pierwsze 2. Stopień Lo(s) = m  n = Stopień Mo(s) Równanie charakterystyczne układu otwartego (przyrównanie mianownika transmitancji do zera) (2) Zależności

  4. Transmitancja układu zamkniętego (3)

  5. (5) Równanie charakterystyczne układu zamkniętego (przyrównanie mianownika transmitancji do zera) (4)

  6. 1. Zera układu zamkniętego Gz(s) są takie same jakzera układu otwartego Go(s) W oparciu o (1) – (5) z poprzedniego wykładu możemy twierdzić:

  7. 2. Bieguny M(s) = 1 + Go(s) są też biegunami transmitancji układu otwartego Go(s),

  8. 3. Zera M(s) = 1 + Go(s) są biegunami transmitancji układu zamkniętego Gz(s), a zatem pierwiastkami równania charakterystycznego układu zamkniętego

  9. Odwzorowanie punktów pomiędzy płaszczyznami zespolonymi Kryterium Nyquist’a opiera się na zasadzie argumentu Cauchy’ego związanej z odwzorowaniami zespolonymi

  10. Skupimy dalej uwagę na odwzorowaniach postaci i prześledźmy zagadnienie Odwzorowanie konturów (krzywej zamkniętej) pomiędzy płaszczyznami zespolonymi

  11. Odwzorowanie konturów może odbywać się przy przemieszczaniu się po nim punktu s na s - płaszczyźnie 1. w prawo - zgodnie z kierunkiem ruchu wskazówek zegara – ujemna zmiana kąta wektora wodzącego, albo 2. w lewo - przeciwnie do kierunku ruchu wskazówek zegara – dodatnia zmiana kąta wektora wodzącego Przyjmiemy konwencję W PRAWO

  12. Ponieważ kryterium Nyquist’a jest metodą graficzną należy ustalić rozumienie pewnych związanych z tym pojęć Punkt obejmowany i okrążany przez kontur  Obejmowany – Będziemy mówili, że punkt jest obejmowany przez kontur (krzywą zamkniętą), jeżeli znajduje się on wewnątrz tego konturu Punkt A jest obejmowany przez kontur Γ, ponieważ A znajduje się wewnątrz konturu Γ Punkt B nie jest obejmowany przez konturΓ, ponieważ B znajduje się na zewnątrz konturu Γ

  13.  Okrążany – Będziemy mówili, że punkt lub obszar jest okrążany przez kontur, jeżeli leży on po prawej stronie konturu przy jego przechodzeniu w przypisanym kierunku Punkt A jest okrążany przez konturem

  14. Kiedy punkt jest okrążany przez kontur , przypisujemy liczbę N liczbie tych okrążeń Okrążeniu zgodnemu z ruchem wskazówek zegara przypisuje się wartość -1 Okrążeniu przeciwnemu do ruchu wskazówek zegara przypisuje się wartość 1

  15. Określanie liczby okrążeń początku układu współrzędnych G-płaszczyzny

  16. Pytania - przy obieganiu przez s konturu na s-płaszczyźnie w prawo w jakim kierunku będzie obiegał G(s) kontur na G-płaszczyźnie? - jak będzie umiejscowiony kontur na G-płaszczyźnie w zależności od tego, czy kontur na s-płaszczyźnie obejmuje na niej, czy też nie obejmuje jakieś zera lub bieguny odwzorowania G(s)?

  17. Zachodzi: 1. Kontur ΓG okrąża początek układu współrzędnych G-płaszczyzny wtedy, i tylko wtedy, gdy kontur Γs na s-płaszczyźnie obejmuje na tej płaszczyźnie jakiekolwiek zero lub jakikolwiek biegun odwzorowania G 2a. Jeżeli kontur Γs okrąża raz zgodnie z ruchem wskazówek zegara biegun (P=1) odwzorowania G na s-płaszczyźnie, to kontur ΓG okrąża raz początek układu współrzędnych G-płaszczyzny w kierunku przeciwnym do ruchu wskazówek zegara (N=1), a zatem zmiana fazy odwzorowania G(s) wynosi 2π 2b. Jeżeli kontur Γs okrąża raz zgodnie z ruchem wskazówek zegara zero (Z=1) odwzorowania G na s-płaszczyźnie, to kontur ΓG okrąża raz początek układu współrzędnych G-płaszczyzny w kierunku zgodnym do ruchu wskazówek zegara (N=-1), a zatem zmiana fazy odwzorowania G(s) wynosi -2π

  18. Uogólnienie: Jeżeli kontur Γs okrąża raz zgodnie z ruchem wskazówek zegara Z zer i P biegunów odwzorowania G na s-płaszczyźnie, to kontur ΓG okrąża początek układu współrzędnych G-płaszczyzny N=P-Z razy, przy czym jeżeli N>0 to w kierunku przeciwnym do ruchu wskazówek zegara, a jeżeli N<0 to w kierunku zgodnym z ruchem wskazówek zegara Odkryliśmy zasadę argumentu Cauchy’ego !!!

  19. Kryterium Nyquista bazuje na zasadzie argumentu Cauchy’ego (analiza zespolona) Niech G(s)będzie funkcją zmiennej zespolonej s, analityczną (różniczkowalną względem zmiennej zespolonej) w pewnym obszarze s-płaszczyzny, co najwyżej z wyjątkiem skończonej liczby punktów. Załóżmy, że pewien kontur Γs został wybrany na s-płaszczyźnie w taki sposób, że wszystkie jego punkty są analityczne. Kontur ΓG uzyskany na F-płaszczyźnie z odwzorowania konturu Γs funkcją G(s), będzie okrążał początek układu współrzędnych G-płaszczyzny tyle razy, ile wynosi różnica liczby biegunów i liczby zer funkcji G(s), które są obejmowane przez kontur Γs N = P - Z gdzie Zjest liczbą zer G(s)obejmowanych przez Γs , Pjest liczba biegunów G(s)obejmowanych przez Γs , a N jest liczbą okrążeń przez ΓG początku układu współrzędnych F-płaszczyzny

  20. Jak określić kontur Γs jeżeli interesuje nas badanie stabilności? Kontur Γs powinien obejmować całą prawą półpłaszczyznę płaszczyzny zmiennej zespolonej s wraz z osią urojoną z wyłączeniem co najwyżej skończonej liczby jej punktów – kontur ten będziemy nazywali konturem Nyquist’a lub D-konturem

  21. Kiedy bieguny lub zera układu otwartego leżą w początku układu współrzędnych płaszczyzny s lub na osi urojonej Sposób postępowania (jeden z możliwych) Modyfikujemy kontur Nyquist’a tak, aby obejść biegun lub zero jako położony w lewej półpłaszczyźnie płaszczyzny zmiennej zespolonej s – obchodzimy go półokręgiem o nieskończenie małym promieniu  położonym w prawej półpłaszczyźnie

  22. Kontur Nyquista Wykres Nyquista (wykreślanie wykresu transmitancji układu otwartego dla określenia stabilności układu zamkniętego) Kryterium Nyquista bazuje na odwzorowaniu konturu Nyquista w wykres Nyquista układu otwartego Wykres Cauchy’ego Punktem krytycznym staje się punkt (-1, j0) zamiast punktu (0,j0)

  23.  Korzystając z zasady argumentu możemy twierdzić, że liczba tych zer wynosi: Z = P - N Problem stabilności – kryterium Nyquist’a: 1. Czy układ zamknięty posiada bieguny w prawej półpłaszczyźnie płaszczyzny zmiennej zespolonej s? Wiemy: (patrz początek materiału) Bieguny transmitancji układu zamkniętego Gz(s) są zerami M(s)=1+Go(s) 2. Czy M(s)=1+Go(s) posiada zera w prawej półpłaszczyźnie płaszczyzny zmiennej zespolonej s? 3. Aby układ zamknięty był stabilny: Z=0 lub P=N

  24. Przypomnijmy co reprezentują w tym ujęciu Z, P oraz N? Z – liczba zer M(s)=1+Go(s) w prawej półpłaszczyźnie płaszczyzny zmiennej zespolonej s, równa liczbie biegunów układu zamkniętego w prawej półpłaszczyźnie tejże płaszczyzny. Dla stabilnego układu zamkniętego Z musi być równe zero P – liczba biegunów M(s)=1+Go(s) w prawej półpłaszczyźnie płaszczyzny zmiennej zespolonej s, równa liczbie biegunów układu otwartego w prawej półpłaszczyźnie tejże płaszczyzny. P może być określone wprost lub z kryterium Routh’a N – liczba okrążeń charakterystyki Nyquista układu otwartego punktu (-1,j0). Okrążenia przeciwnie do kierunku ruchu wskazówek zegara są dodatnie, zgodne w kierunkiem ruchu wskazówek zegara są ujemne

  25. Kryterium Nyquista można sformułować następująco Aby układ zamknięty był stabilny, wykres Nyquist’a układu otwartego Go(s)=G(s)H(s) powinien okrążać punkt (-1, j0) tyle razy ile biegunów układu otwartego leży w prawej półpłaszczyźnie zespolonej s; okrążenia wykresu Nyquist’a punktu (-1,j0), jeżeli istnieją powinny być w kierunku przeciwnym do kierunku konturu Nyquist’a Kryterium Nyquista dla bardzo częstego przypadku kiedy P=0 - liczba biegunów układu otwartego w prawej półpłaszczyźnie płaszczyzny zmiennej zespolonej wynosi zero, tzn. kiedy układ otwarty jest stabilny Jeżeli układ otwarty jest stabilny, P=0, to aby układ zamknięty był stabilny, wykres Nyquist’a układu otwartego Go(s)=G(s)H(s) nie powinien obejmować punktu (-1, j0)

  26. Podstawienie Podsumowanie - kryterium Nyquista  Problem: Czy funkcja wymierna 1 + Go(s) ma, czy też nie ma zer w prawej półpłaszczyźnie zmiennej zespolonej s?  Rozwiązanie: Wykorzystanie zasady argumentu Cachy’ego  Ułatwienie: Wykorzystanie charakterystyki układu otwartego i punktu (-1,j0) jako punktu krytycznego

  27. Przykład 1 Rozważmy Czy układ zamknięty jest stabilny? A jeżeli? P=0, N=0; Z=P-N=0

  28. K=1 -2.7100 -0.1450 + 1.4809i -0.1450 - 1.4809i K=10 -.6840 0.8420 + 3.1905i 0.8420 - 3.1905i P=0, N=0; Z=P-N=0 P=0, N=-2; Z=P-N=2

  29. Przykład 2 Rozważmy Czy układ zamknięty jest stabilny? A jeżeli? P=0, N=0; Z=P-N=0

  30. K=1 -1.0000 + 2.2361i -1.0000 - 2.2361i K=5 -1.0000 + 5.0000i -1.0000 - 5.0000i K=10 -1.0000 + 7.0711i -1.0000 - 7.0711i P=0, N=0; Z=P-N=0 P=0, N=0; Z=P-N=0 P=0, N=0; Z=P-N=0

  31. Przykład 3 Rozważmy Czy układ zamknięty jest stabilny? A jeżeli? P=0, N=0; Z=P-N=0

  32. K=1 -5.2737 -0.8631 + 1.0729i -0.8631 - 1.0729i K=10 -6.5964 -0.2018 + 2.8805i -0.2018 - 2.8805i K=20 -7.4235 0.2118 + 3.7549i 0.2118 - 3.7549i P=0, N=0; Z=P-N=0 P=0, N=0; Z=P-N=0 P=0, N=-2; Z=P-N=2

  33. K=1 -0.5000 + 2.1794i -0.5000 - 2.1794i K=2 -0.5000 + 3.1225i -0.5000 - 3.1225i K=5 -0.5000+ 4.9749i -0.5000 - 4.9749i Przykład 4 P=0, N=0; Z=P-N=0 P=0, N=0; Z=P-N=0 P=0, N=0; Z=P-N=0

  34. Przykład 5

  35. K=0.5 -2.0929 0.0465 + 1.0919i 0.0465 - 1.0919i K=2 -2.8675 0.4337 + 1.8164i 0.4337 - 1.8164i K=3 -3.1739 0.5870 + 2.0932i 0.5870 - 2.0932i K=5 -3.6258 0.8129 + 2.4968i 0.8129 - 2.4968i Dla wszystkich przypadków: P=0, N=-2; Z=P-N=2

  36. Przykład 6 P =0, N = 0; Z=P-N=0

  37. Przykład 7 P =1, N = -1; Z=P-N=2

  38. K=1 -5.0329 0.7773 0.2556 K=5 -5.1574 0.5787 + 0.7966i 0.5787 - 0.7966i K=10 -5.2995 0.6498 + 1.2103i 0.6498 - 1.2103i

  39. Przykład 8 P =1, N = 1; Z=P-N=0

  40. -0.5000 + 0.8660i -0.5000 - 0.8660i

  41. Zapas stabilności Istnieje potrzeba określania w jakim stopniu układ jest stabilny – jak daleko znajduje się od punktu w którym stanie się niestabilny Użyteczne idee  zapas modułu (wzmocnienia) – gm (2-6)  zapas fazy – m (45o – 60o) Obydwie miary określają bliskość wykresu Nyquist’a od punktu krytycznego (1, j0) na płaszczyźnie zmiennej zespolonej

More Related