1 / 30

Particle Spectra at AGS, SPS and RHIC

Particle Spectra at AGS, SPS and RHIC. Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions net protons produced particles Transverse mass spectra Hydrodynamics. Proton rapidity distribution.

meiere
Download Presentation

Particle Spectra at AGS, SPS and RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen • Similarities and differences • Rapidity distributions • net protons • produced particles • Transverse mass spectra • Hydrodynamics

  2. Proton rapidity distribution • AGS energies – centrality dependence B. Back et al., E917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970

  3. Proton rapidity distribution • AGS energies, central collisions - energy dependence B. Back et al., E917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970

  4. Stopping • Rapidity shift - energy dependence F. Videbæk, nucl-ex/0106017

  5. Net proton rapidity distribution – centrality dependence • SPS, 158 GeV/nucl., NA49 • RHIC, sNN= 130 GeV, STAR, BRAHMS N. Xu, QM2001

  6. Proton and antiproton rapidity distributions • SPS, 158 GeV/nucl., NA49

  7. Antiproton/proton ratio – rapidity distribution • SPS, 158 GeV/nucl., NA49 • RHIC, sNN= 130 GeV, BRAHMS

  8. Antiproton/proton ratio – centrality dependence • SPS, 158 GeV/nucl., NA49 • RHIC, sNN= 130 GeV, BRAHMS

  9. Rapidity distributions N. Herrmann, J. P. Wessels and T. Wienold, Ann. Rev. Nucl. Part. Sci. 49 (1999) 581, and references therein • AGS, 10.8 AGeV + =- K+ broader than K- p  

  10. Pion rapidity distribution • Comparison + and - • SPS, central Pb+Pb, 158 GeV/nucl. NA49 Same widths for + and -

  11. Kaon rapidity distribution • Comparison K+ and K- • SPS, central Pb+Pb, 40 GeV/nucl. • NA49 Different widths for K+ and K-

  12. -rapidity distribution • Comparison + and - • SPS, central Pb+Pb, 158 GeV/nucl. • NA49 A. Billmeier, PhD thesis, 2001; R. Barton, J. Phys. G27 (2001) 367 - + Different widths for + and -

  13. Rapidity distributions • Suddenly hadronizing QGP-fireball + remaining internal longitudinal flow of colliding quarks • J. Letessier, J. Rafelski, hep-ph/0106151 SPS NA49  = 1.22 K+ = 1.25 (K- = 1.17)

  14. 1/mT dN/dmT (a.u.) Transverse momentum spectra X.-N. Wang, QM01 • Inv. CS Hard component: next session Soft component: • Transverse mass spectra fit function: 1/mTdN/dmT ~ exp(-mT/T) • fit range: • : pT ~ .3 – 1 GeV/c heavier hadrons: pT  1.5–2 GeV/c

  15. Transverse mass spectra • Comparison K+ and K- • SPS, NA44 Histograms: RQMD; fit: 1/mTdN/dmT ~ exp(-mT/T)

  16. Transverse mass spectra • Comparison + and - • SPS, Pb+Pb, 158 GeV/nucl., different centralities • WA97 • Central Pb+Pb collisions, inverse slopes: X- = 305 ± 25 MeV, X+ = 287 ± 30 MeV; • Similar spectra for particle/antiparticle

  17. e(-mt/T) Transverse mass spectra • Comparison  and  RHIC, central Au+Au (14%) • STAR No feed-down correction L (x2) L T=352+-7 MeV • Identical slope parameters • Indication of deviations from single slope fit at low and high mT

  18. Centrality dependence of transverse mass spectra (1) • SPS, 158 GeV/nucl., WA97: W-+ W+ No dependence STAR, submitted to Phys. Rev. Lett. • RHIC, • STAR: • F K-K+ No dependence

  19. Centrality dependence of transverse mass spectra (2) J.W. Harris, QM01 • RHIC, Au+Au STAR: K- Slight dependence • RHIC, Au+Au • STAR: p J.W. Harris, QM01 Strong dependence

  20. Inverse slope parameter –p+p vs Pb+Pb NA49; A.M. Rossi, Nucl. Phys. B84 (1975) 269 • SPS, • p+p • SPS, • central • Pb+Pb

  21. Inverse slope parameter vs particle mass (1) STAR data: C. Roy, this conference • RHIC, central Au+Au  Kp   

  22. Inverse slope parameter vs particle mass (2) • Comparison RHIC (central Au+Au) and SPS (central Pb+Pb) STAR data: C. Roy, this conference Kp    d J/

  23. Inverse slope parameter vs sqrt(s) Central Au+Au(Pb+Pb) p+p • f  K-K+ NA49, STAR Nucl.Phys. A661(1999)506 Phys.Rev.Lett B491(2000)59 Nucl.Phys. B203(1982)27

  24. Sudden breakup of QGP-fireball • Thermal freeze-out conditions = chemical freeze-out • SPS, central Pb+Pb, WA97 data • J. Rafelski, G. Torrieri, J. Letessier, hep-ph/0104132 Tfo,global  145 MeV v  0.52c

  25. Hydrodynamics motivated mT fit (1) • SPS, central Pb+Pb; • H. Appelshaeuser (NA49), Eur. Phys. J. C2 (1998) 661; B. Tomasik, U. Wiedemann, U.W. Heinz, nucl th/9907096 • Correlate - transverse mass spectrum and -- Bose-Einstein correlations • 2 contour plots for the fits of the single particle mT-spectrum and of the Cartesian HBT radii Tfo  100 MeV <v>  0.55c

  26. p b s  R Hydrodynamics motivated mT fit (2) • RHIC, central Au+Au; STAR • S. Margetis, ThermalFest, 2001; P. Jones, this conference Shape of the mT spectrum depends on particle mass, mT-range, flow profile: where STAR Preliminary and solid : used in fit flow profile used: r =s (r/R)0.5 - K- 1/mT dN/dmT (a.u.) E.Schnedermann et al, PRC48 (1993) 2462 mT - m0[GeV/c2]

  27. p K- - Hydrodynamics motivated mT fit (3) • RHIC, central Au+Au; STAR • S. Margetis, ThermalFest, 2001; P. Jones, this conference 2 map (contour plot for 95.5%CL) At chi square minimum Tth = 0.13[GeV] <r > = 0.52 [c] Tth[GeV] 0 0.4 0 0.4 <r > [c] • Strong radial flow at RHIC ßr (RHIC) = 0.52c Tfo (RHIC) = 0.13 GeV

  28. t() f()   1 Hydrodynamics motivated mT fit (4) • RHIC, central Au+Au, -K-p; PHENIX • J. Buward-Hoy, ThermalFest, 2001 1/mt dN/dmt = A  f()  d mT K1( mT /Tfo cosh  ) I0( pT /Tfo sinh  ) PHENIX Preliminary where   radius r= r/R, particle density distribution: linear velocity profile: Tfo ~ 125 - 83 MeV ~ 104 MeV t ~ 0.6 - 0.8 ~ 0.7 < t> ~ 0.4 - 0.6 ~ 0.5

  29. Hydro + Cascade model • SPS, RHIC, central Pb+Pb (Au+Au) • D. Teaney, J. Lauret, E.V. Shuryak, nucl-th/0104041 • RHIC, central Au+Au; PHENIX • J. Buward-Hoy, ThermalFest, 2001 • , K • Tfo ~ 135 MeV • <t > ~ 0.55 • nucleons • Tfo ~ 120 MeV • <t > ~ 0.6

  30. Summary • Variety of shapes of rapidity distributions • Complex transverse mass spectra • Hydrodynamics • Strong radial flow • t 0.5-0.7c • Sudden QGP break up model: • Tglobal 145 MeV (SPS) • Hydro mT-fits: • Tfo, thermal  100-130 MeV

More Related