1 / 23

Two-photon Precision Spectroscopy of H 2 +

Two-photon Precision Spectroscopy of H 2 +. Jean-Philippe Karr Albane Douillet Vu-Quang Tran, PhD Laurent Hilico. Vladimir Korobov. Rachidi Osseni, post doc Jofre Pedregosa, post doc Franck Bielsa, PhD Tristan Valenzuela, post doc. outline. Motivations Experimental status

miron
Download Presentation

Two-photon Precision Spectroscopy of H 2 +

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two-photon Precision Spectroscopy of H2+ Jean-Philippe Karr Albane Douillet Vu-Quang Tran, PhD Laurent Hilico Vladimir Korobov Rachidi Osseni, post doc Jofre Pedregosa, post doc Franck Bielsa, PhD Tristan Valenzuela, post doc

  2. outline • Motivations • Experimental status • Theoretical progress

  3. mp/me measurement Why ? • Fundamental constant determination mp/me codata 1836.152 672 45 (75) 4.1 10-10 Fine structure constant a = 1/137,03… • e- g-2 measurement, G. Gabrielse 2008 a-1 = 137.035 999 084 (51) (3.7 10-10) a-1 = 137.035 999 037 (91) (6.6 10-10) • h/MRb measurement, F. Biraben 2010 h/mRb : 7. 10-10 → 4.2 10-10 mx/my < 10-10 → 3.5 10-10

  4. mp/me measurement Why ? • Fundamental constant time-variations Astrophysics and spectroscopy H2, HD, NH3, CO, HCO+, HCN … Dt ~ 1010 years red shifts analysis Laboratory physics SF6spectroscopy Proposals on CaH+, MgH+, SrH+, …, GeBr+ Ultra narrow lines Low polarisability Low linear Zeeman effect HD+, H2+ at 10-16 • QED test on simple molecules

  5. mp/me measurement How ? mP and mein atomic unitsare determined separately through RF measurements in Penning traps. Accuracy • Electron mass Larmor to cyclotron frequency ratio C, O, Si • Proton mass :cyclotron frequencies, using 12C4+. R.S. Van Dyck, Jr. et al., in Trapped Charged Particles and Fundamental Physics AIP Conf. Proc. 457, pp. 101-110 (1999). 8.9 10-11 mp = 1.007 276 466 812 (90) me = 0.000 548 579 909 46 (22) 4.0 10-10 Codata 2011 Mp/me = 1836.152 672 45 (75) 4.1 10-10

  6. e- p+ R 248 nm p+ 9.2 µm mp/me Direct optical determination by H2+ spectroscopy Method • Doppler-free Two-photon • spectroscopy • 2+1’ REMPD • Trapped ions • High precision calculations 32.6 THz ( 9.1 µm ) (1091 cm-1) Dn ~1600 Hz Energy (atomic units) expected Internuclear distance (atomic unit)

  7. What do we know on H2+ ? Lundeen group, H2 Rydberg states L Jefferts group, Hyperfine or Zeeman spectroscopy from R.E. Moss, Molecular Physics, 80, 1541 1993. Project challenges v • state selected H2+ ion production • H2+ trapping • REMPD lasers • High precision calculations nexp mp/me Carrington group, Southampton

  8. Two-photon transition probabilities How to choose v→v’ ? v=0 → v=1 transitions 9.1 µm

  9. Two-photon transition probabilities How to choose L→L’ ? Total nuclear spin I=(-1)L L=0, v=0 → L=0, v=1 l=9.128µm L=2, v=0 → L=2, v=1 l=9.166µm L=3, v=0 → L=3, v=1: l=9.205µm Close to a CO2 laser emission line Quantum Cascade Laser available

  10. Experimental setup Hyperbolic Paul trap Quantum cascade laser (QCL) Optical cavity 248 nm KrF excimer Pulsed Laser 2 mm

  11. IR laser source HCOOH : formic or methanoic acid MHz HITRAN v, L

  12. IR source QCL / CO2 beat note Free QCL Quantum cascade Laser 5 MHz O.I. 2 mm QCL / CO2 beat note HCOOH stabilized CO2 laser < 200 Hz Band width ~ 6 MHz RBW : 10 kHz VBW : 1 kHz

  13. IR source • Results • optical power 54 mW • linewidth dn ~ 3kHz • high finesse cavity (~1000) • Faraday optical isolator at 9.2 µm F. Bielsa & al., Optics Letters 32, 1641-1643 (2007) L. Hilico, Rev. Sc. Instr. 82, 096106 (2011) G2ph~0.3 s-1p polarization G2ph~0.07 s-1s+ polarization • HCOOH stabilized CO2 laser Absolute frequency measurement 32 708 391 980.5 (1.0) kHz LPL, Villetaneuse, France F. Bielsa & al. J. Mol. Spectrosc. 247, 41-46 (2008)

  14. The ion trap • = 2p x 14 MHz DC -10 / +10 VAC 150 V r0 = 4.2 mm z0 = 3 mm

  15. H2+ creation: electron impact T=300K G. Werth & Al. Z phys D 28, (1993). v=0 : 12 % v=1 : 19 % Rotational distribution L=2 : 12 % Vibrational distribution Result : 0.07 x 0.12 x 0.6 = 0.5 % Hyperfine structure J=3/2 40% J=5/2 60% Very small !!

  16. Photodissociation at 248 nm 2 3 1 UV 1- ion creation (~ 500) 1,0 s 2- 1 to 30 UV pulses (20 mJ) 0,3 s 3- extraction, time of flight and counting 0.32 mJ signal 1 adjustable parameter ion cloud size experiments 0.85 mm num. simulations 0.83 mm 1.10 mJ 3.25 mJ 11.2 mJ 34.0 mJ 114 mJ Laser pulse number n

  17. Photodissociation at 248 nm Results J.-Ph. Karr & al., Applied Phys. B (2011) • v=0 v=1 population difference L=2, J=5/2 30 pulses at 34 mJ, pv=0 - pv=1 ~ 33% 2.4 % 30 pulses at 114 mJ, pv=0 - pv=1 ~ 86 % 6.2 % drawback : ion losses • Photodissociation yield

  18. Can we perform H2+ REMPD spectroscopy ? Two-photon transitions Photodissociation Trap losses Ion number fluctuations Present experiment signal to noise ratio: 0.27 • H2+ v=0,L=2 population • G2ph Improvements SNR ~ 30

  19. Experimental developments • State selected H2+ ion creation increase v=0 v=1 population difference H2 : v=0, L=0, 1, 2 à 300 K H2 X1Sg+, v=0, L=2 + 3 hn H2 C1Pu-, v=0, L=2 3+1 REMPI + hn mJ 303 nm 10 ns H2+ X Sg+, v=0, L + e- V. Mac Koy Anderson, & Al, Chem. Phys. Lett. 105, 22 (1984) H2+ branching ratios v=0 – v=1 L=2, J=5/2 pop. diff. 0.8 x 1 x 0.6 = 0.48 L v 0 1 1 0.1 Photo-electron yield • 0 0.005 • 1 • 4 0.01 O’Halloran, J. Chem. Phys. 87, 3288 (1987)

  20. Experimental developments • A linear trap for tighter focussing G2ph x 81 waist ÷3 • H2+ sympathetic cooling by laser cooled Be+ ions T = 300 K 7 kHz Second order Doppler effect T = 20 mK negligible

More Related