1 / 37

Rotation and Translation Mechanisms for Tabletop Interaction

MITSUBISHI ELECTRIC. Changes for the better. Rotation and Translation Mechanisms for Tabletop Interaction. Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen.

oakes
Download Presentation

Rotation and Translation Mechanisms for Tabletop Interaction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MITSUBISHI ELECTRIC Changes for the better Rotation and TranslationMechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen

  2. Rotation and translation techniquescan be better understood by comparing thedegrees of freedoms of input to output

  3. Motivation Back-Country (Telemark) Downhill

  4. Motivation • Downhill bindings • Attached at rear • Telemark bindings • Free at rear

  5. Motivation

  6. Degrees of Freedom The minimum number of independent variables that describes the possible movement in a system.

  7. Degrees of Freedom • Input (physical movement): • Single-point or multi-point (per person) • 2D surface or physical 3D space • Output (virtual movement): • Position (2D) • Angle (1D)

  8. Rotation & Translation

  9. Methods ofRotation & Translation

  10. Explicit Specification • Input • x, y, θ, etc. • 1 DOF • Output • x, y, θ, etc. • 1 DOF • Input DOF = Output DOF

  11. Independent Translation • Input • x & y • 2 DOF • Output • x & y • 2 DOF • Input DOF = Output DOF

  12. Independent Translation

  13. Independent Rotation • Input • x & y • 2 DOF • Output • θ • 1 DOF • Input DOF > Output DOF

  14. Independent Rotation

  15. Automatic Orientation • Input • x & y • 2 DOF • Output • r, θ • 2 DOF • Input DOF = Output DOF

  16. Automatic Orientation

  17. Integral Rotation & Translation • Input • x & y • 2 DOF • Output • x, y, & θ • 3 DOF • Input DOF < Output DOF

  18. Integral Rotation & Translation

  19. Two-Point Rotation & Translation • Input • x1, y1, x2, y2 • 4 DOF • Output • x, y, θ • 3 DOF • Input DOF > Output DOF

  20. Two-Point Rotation & Translation

  21. Degrees of Freedom Explicit Specification Independent Translation Automatic Orientation 1DOF → 1DOF 2DOF → 2DOF 2DOF → 2DOF Independent Rotation 2-Point Integrated 2DOF → 1DOF 4DOF → 3DOF 2DOF → 3DOF

  22. Impact ofDegrees of Freedom

  23. Coordination & Communication • Use rotation & translation to communicate • Must support both: • Need all 3 DOF output

  24. Coordination & Communication Communication-Friendly Communication-Unfriendly

  25. Consistency • Consistent • Output = f(Input) • Output DOF ≤ Input DOF • Inconsistent • Output ≠ f(Input) • Output DOF > Input DOF:

  26. Consistency Inconsistent Consistent

  27. Completeness • Complete • Output DOF ≥ Entire space • Incomplete • Output DOF < Entire space

  28. Completeness Complete Incomplete

  29. GUI Integration • Restricted Areas • Input DOF = Output DOF • Works!

  30. GUI Integration Input DOF > Output DOF (Difficult to constrain) Input DOF < Output DOF (Larger area desirable)

  31. Role of Snapping • Input DOF > Output DOF • e.g. Ruler: 2DOF Input, 1DOF Output • e.g. Independent Rotation, 2-Point

  32. Role of Snapping • Snap to polar-grid • Snap to rectilinear grid • Snap to one another • Snap: • Position • Orientation • Both

  33. Design Questions • What DOF of output is necessary? • What DOF of input is available? • How can the input DOF be mapped to the output DOF? • If the mapping involves a change in DOF, how will this affect interaction?

  34. Conclusion • Downhill bindings • Less DOF input • Good for downhill • Telemark bindings • More DOF input • Good for uphill climbs

  35. Conclusion Alpine Touring (AT) Bindings

  36. Rotation and translation techniquescan be better understood by comparing thedegrees of freedoms of input to output

  37. Thank you! Mark S. Hancock (msh@cs.ucalgary.ca) Frédéric D. Vernier (frederic.vernier@limsi.fr) Daniel Wigdor (dwigdor@dgp.toronto.edu) Sheelagh Carpendale (sheelagh@cpsc.ucalgary.ca) Chia Shen (shen@merl.com)

More Related