1 / 35

Advanced Views: XML-Relational Storage and Datalog

Advanced Views: XML-Relational Storage and Datalog. Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 7, 2007. Some slide content courtesy of Susan Davidson, Dan Suciu, & Raghu Ramakrishnan. Administrivia.

Albert_Lan
Download Presentation

Advanced Views: XML-Relational Storage and Datalog

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Advanced Views:XML-Relational Storage and Datalog Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 7, 2007 Some slide content courtesy of Susan Davidson, Dan Suciu, & Raghu Ramakrishnan

  2. Administrivia • Homework 4 is now due Friday at 11:59PM EST • Project teams should be complete • However, there are several teams of 3 • For a 3-person team, you may eliminate one data source and wrapper from your system • By next Wednesday: a brief email for each project group describing the expected division of labor • Note the project has a demo presentation and a ~10 page report – consider those as well!

  3. Mapping Relational  XML • We know the following: • XML is a tree • XML is SEMI-structured • There’s some structured “stuff” • There is some unstructured “stuff” • Issues relate to describing XML structure, particularly parent/child in a relational encoding • Relations are flat • Tuples can be “connected” via foreign-key/primary-key links

  4. Suppose we had:<tree id=“0”> <content id=“1”> <sub-content>XYZ </sub-content> <i-content>14 </i-content> </content></tree> If we have no IDs, we CREATE values… BinaryLikeEdge(key, label, type, value, parent) The Simplest Way to Encode a Tree What are shortcomings here?

  5. Florescu/Kossmann Improved Edge Approach • Consider order, typing; separate the values • Vint(vid, value) • Vstring(vid, value) • Edge(parent, ordinal, label, flag, target)

  6. How Do You Compute the XML? • Assume we know the structure of the XML tree (we’ll see how to avoid this later) • We can compute an “XML-like” SQL relation using “outer unions” – we first this technique in XPERANTO • Idea: if we take two non-union-compatible expressions, pad each with NULLs, we can UNION them together • Let’s see how this works…

  7. A Relation that Mirrors theXML Hierarchy • Output relation would look like:

  8. A Relation that Mirrors theXML Hierarchy • Output relation would look like:

  9. A Relation that Mirrors theXML Hierarchy • Output relation would look like: Colors are representative of separate SQL queries…

  10. SQL for Outputting XML • For each sub-portion we preserve the keys (target, ord) of the ancestors • Root: select E.label AS rLabel, E.target AS rid, E.ord AS rOrd, null AS cLabel, null AS cid, null AS cOrd, null AS subOrd, null AS sid, null AS str, null AS intfrom Edge Ewhere parent IS NULL • First-level children: select null AS rLabel, E.target AS rid, E.ord AS rOrd, E1.label AS cLabel, E1.target AS cid, E1.ord AS cOrd, null AS …from Edge E, Edge E1where E.parent IS NULL AND E.target = E1.parent

  11. The Rest of the Queries • Grandchild: select null as rLabel, E.target AS rid, E.ord AS rOrd, null AS cLabel, E1.target AS cid, E1.ord AS cOrd, E2.label as sLabel, E2.target as sid, E2.ord AS sOrd, null as …from Edge E, Edge E1, Edge E2where E.parent IS NULL AND E.target = E1.parent AND E1.target = E2.parent • Strings: select null as rLabel, E.target AS rid, E.ord AS rOrd, null AS cLabel, E1.target AS cid, E1.ord AS cOrd, null as sLabel, E2.target as sid, E2.ord AS sOrd, Vi.val AS str, null as intfrom Edge E, Edge E1, Edge E2, Vint Vi where E.parent IS NULL AND E.target = E1.parent AND E1.target = E2.parent AND Vi.vid = E2.target • How would we do integers?

  12. Finally… • Union them all together: ( select E.label as rLabel, E.target AS rid, E.ord AS rOrd, … from Edge E where parent IS NULL)UNION ( select null as rLabel, E.target AS rid, E.ord AS rOrd, E1.label AS cLabel, E1.target AS cid, E1.ord AS cOrd, null as … from Edge E, Edge E1 where E.parent IS NULL AND E.target = E1.parent) UNION ( . :) UNION ( . : ) • Then another module will add the XML tags, and we’re done!

  13. “Inlining” Techniques • Folks at Wisconsin noted we can exploit the “structured” aspects of semi-structured XML • If we’re given a DTD, often the DTD has a lot of required (and often singleton) child elements • Book(title, author*, publisher) • Recall how normalization worked: • Decompose until we have everything in a relation determined by the keys • … But don’t decompose any further than that • Shanmugasundaram et al. try not to decompose XML beyond the point of singleton children

  14. Inlining Techniques • Start with DTD, build a graph representing structure tree ? @id * content @id * * i-content sub-content • The edges are annotated with ?, * indicating repetition,optionality of children • They simplify the DTD to figure this out

  15. Building Schemas • Now, they tried several alternatives that differ in how they handle elements w/multiple ancestors • Can create a separate relation for each path • Can create a single relation for each element • Can try to inline these • For tree examples, these are basically the same • Combine non-set-valued things with parent • Add separate relation for set-valued child elements • Create new keys as needed author book name

  16. Schemas for Our Example • TheRoot(rootID) • Content(parentID, id, @id) • Sub-content(parentID, varchar) • I-content(parentID, int) • If we suddenly changed DTD to <!ELEMENT content(sub-content*, i-content?) what would happen?

  17. XQuery to SQL • Inlining method needs external knowledge about the schema • Needs to supply the tags and info not stored in the tables • We can actually directly translate simple XQuery into SQL over the relations – not simply reconstruct the XML

  18. An Example for $X in document(“mydoc”)/tree/contentwhere $X/sub-content = “XYZ”return $X • The steps of the path expression are generally joins • … Except that some steps are eliminated by the fact we’ve inlined subelements • Let’s try it over the schema: TheRoot(rootID) Content(parentID, id, @id) Sub-content(parentID, varchar) I-content(parentID, int)

  19. XML Views of Relations • We’ve seen that views are useful things • Allow us to store and refer to the results of a query • We’ve seen an example of a view that changes from XML to relations – and we’ve even seen how such a view can be posed in XQuery and “unfolded” into SQL

  20. An Important Set of Questions • Views are incredibly powerful formalisms for describing how data relates: fn: rel …  rel rel • Can I define a view recursively? • Why might this be useful in the XML construction case? When should the recursion stop? • Suppose we have two views, v1 and v2 • How do I know whether they represent the same data? • If v1 is materialized, can we use it to compute v2? • This is fundamental to query optimization and data integration, as we’ll see later

  21. Reasoning about Queries and Views • SQL or XQuery are a bit too complex to reason about directly • Some aspects of it make reasoning about SQL queries undecidable • We need an elegant way of describing views (let’s assume a relational model for now) • Should be declarative • Should be less complex than SQL • Doesn’t need to support all of SQL – aggregation, for instance, may be more than we need

  22. Let’s Go Back a Few Weeks…Domain Relational Calculus Queries have form: {<x1,x2, …, xn>| p } Predicate: boolean expression over x1,x2, …, xn • We have the following operations: <xi,xj,…> R xiop xj xiop constconstop xi xi. p xj. p pq, pq p, pq where op is , , , , ,  and xi,xj,… are domain variables; p,q are predicates • Recall that this captures the same expressiveness as the relational algebra domain variables predicate

  23. A Similar Logic-Based Language:Datalog Borrows the flavor of the relational calculus but is a “real” query language • Based on the Prolog logic-programming language • A “datalog program” will be a series of if-then rules (Horn rules) that define relations from predicates • Rules are generally of the form: Rout(T1)  R1(T2), R2(T3), …, c(T2[ … Tn) where Rout is the relation representing the query result, Ri are predicates representing relations, c is an expression using arithmetic/boolean predicates over vars, and Ti are tuples of variables

  24. Datalog Terminology • An example datalog rule: idb(x,y)  r1(x,z), r2(z,y), z < 10 • Irrelevant variables can be replaced by _ (anonymous var) • Extensional relations or database schemas (edbs) are relations only occurring in rules’ bodies – these are base relations with “ground facts” • Intensional relations(idbs) appear in the heads – these are basically views • Distinguished variables are the ones output in the head • Ground facts only have constants, e.g., r1(“abc”, 123) body head subgoals

  25. Datalog in Action • As in DRC, the output (head) consists of a tuple for each possible assignment of variables that satisfies the predicate • We typically avoid “8” in Datalog queries: variables in the body are existential, ranging over all possible values • Multiple rules with the same relation in the head represent a union • We often try to avoid disjunction (“Ç”) within rules • Let’s see some examples of datalog queries (which consist of 1 or more rules): • Given Professor(fid, name), Teaches(fid, serno, sem), Courses(serno, cid, desc), Student(sid, name) • Return course names other than CIS 550 • Return the names of the teachers of CIS 550 • Return the names of all people (professors or students)

  26. Datalog is Relationally Complete • We can map RA  Datalog: • Selection p: p becomes a datalog subgoal • Projection A: we drop projected-out variables from head • Cross-product r  s: q(A,B,C,D)  r(A,B),s(C,D) • Join r ⋈ s: q(A,B,C,D)  r(A,B),s(C,D), condition • Union r U s: q(A,B)  r(A,B) ; q(C, D) :- s(C,D) • Difference r – s: q(A,B)  r(A,B), : s(A,B) • (If you think about it, DRC  Datalog is even easier) • Great… But then why do we care about Datalog?

  27. A Query We Can’tAnswer in RA/TRC/DRC… Recall our example of a binary relation for graphs or trees (similar to an XML Edge relation): edge(from, to) If we want to know what nodes are reachable: reachable(F, T, 1) :- edge(F, T) distance 1 reachable(F, T, 2) :- edge(F, X), edge(X, T) dist. 2 reachable(F, T, 3) :- reachable(F, X, 2), edge(X, T) dist. 3 But how about all reachable paths? (Note this was easy in XPath over an XML representation -- //edge) (another way of writing )

  28. Recursive Datalog Queries Define a recursive query in datalog: reachable(F, T, 1) :- edge(F, T) distance 1 reachable(F, T, D + 1) :- reachable(F, X, D), edge(X, T) distance >1 What does this mean, exactly, in terms of logic? • There are actually three different (equivalent) definitions of semantics • All make a “closed-world” assumption: facts should exist only if they can be proven true from the input – i.e., assume the DB contains all of the truths out there!

  29. Fixpoint Semantics One of the three Datalog models is based on a notion of fixpoint: • We start with an instance of data, then derive all immediate consequences • We repeat as long as we derive new facts In the RA, this requires a while loop! • However, that is too powerful and needs to be restricted • Special case: “inflationary semantics” (which terminates in time polynomial in the size of the database!)

  30. Our Query in RA + while(inflationary semantics, no negation) Datalog: reachable(F, T, 1) :- edge(F, T) reachable(F, T, D+1) :- reachable(F, X, D), edge(X, T) RA procedure with while: reachable += edge ⋈ literal1 while change { reachable += F, T, D(F ! X(edge) ⋈T ! X,D ! D0(reachable) ⋈ add1) } Note literal1(F,1) and add1(D0,D) are actually arithmetic and literal functions modeled here as relations.

  31. Negation in Datalog Datalog allows for negation in rules • It’s essential for capturing RA set difference-style ops:Professor(name), : Student(name) • But negation can be tricky… • … You may recall that in the DRC, we had a notion of “unsafe” queries, and they return here… Single(X)  Person(X), : Married(X,Y)

  32. Safe Rules/Queries Range restriction, which requires that every variable: • Occurs at least once in a positive relational predicate in the body, • Or it’s constrained to equal a finite set of values by arithmetic predicates Safe:q(X)  r(X,Y)q(X)  X = 5 q(X) : r(X,X), s(X)q(X)  r(X) Ç (t(Y),u(X,Y)) Unsafe:q(X)  r(Y)q(X) : r(X,X)q(X)  r(X) Ç t(Y) • For recursion, use stratified semantics: • Allow negation only over edb predicates • Then recursively compute values for the idb predicates that depend on the edb’s (layered like strata)

  33. A Special Type of Query: Conjunctive Queries A single Datalog rule with no “Ç,” “:,” “8” can express select, project, and join – a conjunctive query • Conjunctive queries are possible to reason about statically • (Note that we can write CQ’s in other languages, e.g., SQL!) We know how to “minimize” conjunctive queries An important simplification that can’t be done for general SQL We can test whether one conjunctive query’s answers always contain another conjunctive query’s answers (for ANY instance) • Why might this be useful?

  34. Example of Containment Suppose we have two queries:q1(S,C) :- Student(S, N), Takes(S, C), Course(C, X), inCIS(C), Course(C, “DB & Info Systems”)q2(S,C) :- Student(S, N), Takes(S, C), Course(C, X) Intuitively, q1 must contain the same or fewer answers vs. q2: • It has all of the same conditions, except one extra conjunction (i.e., it’s more restricted) • There’s no union or any other way it can add more data We can say that q2 contains q1 because this holds for any instance of our DB {Student, Takes, Course}

  35. Wrapping up Datalog… We’ve seen a new language, Datalog • It’s basically a glorified DRC with a special feature, recursion • It’s much cleaner than SQL for reasoning about • … But negation (as in the DRC) poses some challenges We’ve seen that a particular kind of query, the conjunctive query, is written naturally in Datalog • Conjunctive queries are possible to reason about • We can minimize them, or check containment • Conjunctive queries are very commonly used in our next problem, data integration

More Related