1 / 42

Ch. 16 DNA: The Genetic Material

Ch. 16 DNA: The Genetic Material Intro In 1953, James Watson and Francis Crick presented their model of DNA to the world. Nucleic Acids (DNA: Deoxyribonucleic acid, RNA: Ribonucleic acid) have a unique ability to replicate itself. DNA’s ability to replicate itself precisely is

Ava
Download Presentation

Ch. 16 DNA: The Genetic Material

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch. 16 DNA: The Genetic Material

  2. Intro • In 1953, James Watson and Francis Crick • presented their model of DNA to the world. • Nucleic Acids (DNA: Deoxyribonucleic acid, • RNA: Ribonucleic acid) have a unique ability • to replicate itself. • DNA’s ability to replicate itself precisely is important for its transmission from one generation to the next. • The search for genetic material led to the • discovery of DNA and its structure. • Before the 1940’s it was thought that • proteins were the genetic material.

  3. The genetic role of DNA was first researched • by Frederick Griffith in 1928. • Studied Streptococcuspneumoniae, a • bacterium that causes pneumonia in • mammals. • He discovered one strain that was • nonvirulent (harmless) - R strain. • Another strain was virulent (causes • pneumonia) – S strain. • His experiment: • Mixed heat-killed S strain with • live R strain and injected it into mice.

  4. The mouse died and Griffith took a • blood sample. • He found that some of the R strain • had changed into the S strain. He • called this transformation. Some • chemical component had changed the • R strain into S strain.

  5. After Griffith’s experiment, researchers tried to discover this transforming material. • Finally in 1944, Oswald Avery, Maclyn • McCarty and Colin MacLeod announced that • the transforming substance was DNA. • They took various chemicals from the • heat-killed pathogenic bacteria and tried • to transform nonharmless bacteria with • them. Only DNA worked. • In 1952, Alfred Hershey and Martha Chase • showed that DNA was the genetic material • of the phage T2 (a virus that infects • e. coli bacteria).

  6. They studied bacteriophages – viruses • that infect bacteria. They knew that • viruses need bacteria in order to • replicate. • Since viruses have simple structure, they • wanted to know whether it was their • protein coat or DNA that was the genetic • material.

  7. Their experiment: • They had two batches of viruses: • -Viruses with radioactive sulfur (S-35) • labeling their protein coat. • -Viruses with radioactive phosphorus • (P-32) labeling their DNA. • They allowed for the two batches to • infect bacteria. After infection, they • put the virus/bacteria mixture in a • blender so that the viral parts outside • of the bacteria could be separated.

  8. They centrifuged the mixture so that • the bacteria form a pellet at the • bottom of the tube. • Then they tested the bacteria for • radioactivity. • Found radioactivity inside bacteria.

  9. They concluded that the injected DNA, • radioactively labeled was the genetic • material. • In 1947, Erwin Chargaff had developed a • series of rules based on a survey of DNA • composition in organisms. • He already knew that DNA was a polymer • of nucleotides consisting of a nitrogenous • base, deoxyribose, and a phosphate • group. • The bases could be adenine (A), thymine • (T), guanine (G), or cytosine (C). • Chargaff noticed that the DNA • composition varied from species to • species.

  10. He found that the bases were present in • all species in very regular ratios: -The number of Adenine = Thymine -The number of Cytosine = Guanine • Watson and Crick: By the 1950’s it was now • accepted that DNA was the genetic material. • The race was on to discover its structure. -Linus Pauling -Maurice Wilkins and Rosalind Franklin

  11. Wilkins and Franklin used X-Ray crystallo- • graphy to study the structure of DNA. • From their picture • of DNA, Watson • and Crick were able • to see its helical • structure. • Double-Helix model of DNA proposed by • Watson and Crick: • DNA is made up of nucleotides.

  12. 2. DNA looks like a ladder. It has two strands, each strand with the sugar- phosphate chains on the outside and the nitrogenous bases on the inside. • The nitrogenous bases paired up, forming • the rungs of the ladder. • The ladder is then twisted, forming a coil.

  13. The nitrogenous bases are paired up very • specifically: • A – T • G - C pyrimidines (single ring) purines (double ring) -Only a pyrimidine-purine pairing would produce the 2-nm diameter indicated by the X-ray data.

  14. -The A & T, C & G form hydrogen bonds between one another: -A = T (two) -G = C (three) ** This confirms Chargaff’s observations.

  15. The Structure of DNA • http://www.sumanasinc.com/webcontent/anisamples/molecularbiology/DNA_structure.html

  16. The sequence of nucleotides on one DNA • strand can vary in numerous ways. Each • gene has a specific sequence of • nucleotides. A portion of gene has the following sequence of nucleotides: A T G G A C T T C • T • A • C • C • T • G • A • A • G -Watson and Crick presented their DNA model in 1953. -They, along with Maurice Wilkins won the Noble Prize in Medicine in 1962.

  17. Crick Watson

  18. DNA Replication: • After Watson and Crick presented their DNA • model, they wrote about how DNA replicates. • They said that the two strands of DNA • are complimentary to one another. • When they are separated, they can act • as templates for synthesizing a new • strand of DNA.

  19. Watson and Crick’s model of replication • was called “Semiconservative replication.” -This means that when two strands of DNA are made, each one will have a new strand and an old one. The old strands will act as “templates” to the new complimentary strand. • Experiments done in the late 1950s by • Matthew Meselson and Franklin Stahl • supported the semiconservative model. 1. In their experiments, they labeled the nucleotides of the old strands with a heavy isotope of nitrogen (15N) while any new nucleotides would be indicated by a lighter isotope (14N).

  20. After they labeled the DNA and let it • replicate, they found that each DNA • molecule had one strand labeled with • N-15 and the other with N-14. • They then allowed for the DNA to • replicate once more and they found that • the only strands with N-15 were the • original two strands of DNA.

  21. Meselson-Stahl Experiment • DNA Replication • http://www.sumanasinc.com/webcontent/anisamples/majorsbiology/meselson.html

  22. More than a dozen enzymes and proteins • carry out DNA replication: • E. coli can replicate its DNA in less than • an hour. • Human cells can replicate its 6 billion • base pairs in only a few hours. • Replication is highly accurate; only one error per billion nucleotides. • DNA replication starts at the origins of • replication. • In bacteria, there are very specific • nucleotide sequences that enzymes • recognize as sites where replication • begins.

  23. 2. In eukaryotes, there are many sites on the DNA strand where replication takes place. • At the origin of replication, a replication • bubble forms, where new DNA strands • are elongated in both directions.

  24. DNA Polymerase is the enzyme that • elongates the new DNA at a replication • fork. • The rate of elongation is about 500 • nucleotides per second in bacteria and • 50 per second in human cells. -The nucleotides that are attached to the newly formed strands are called nucleoside triphosphates. Each has a nitrogen base, deoxyribose, and a triphosphate tail.

  25. -As each nucleotide is added, the last two phosphate groups are hydrolyzed to form pyrophosphate.

  26. -The exergonic hydrolysis of pyrophosphate to two inorganic phosphate molecules drives the polymerization of the nucleotide to the new strand.

  27. The strands in the double helix are • antiparallel. • The sugar-phosphate • backbones run in • opposite directions. • One strand goes • from 3’  5’ • direction. The • other strand goes • from 5’  3’ • direction.

  28. DNA polymerases can only add • nucleotides to the free 3’ end of a • growing DNA strand. -DNA can only replicate in the 5’  3’ direction.

  29. -Leading strand replicates from 5’ 3’. -Lagging strand replicates from 5’ 3’, but by forming Okazaki fragments. -The Okazaki fragments (100-200 nucleotides), are then joined by DNA ligase.

  30. DNA replication starts with a primer (a • short fragment of RNA). • A primer is • created by an • enzyme called • primase. • Once the primer • is made, DNA • polymerase can • start adding • nucleotides at the • 3’ end. • The primer is • then converted • into deoxyribo- • nucleotides.

  31. Only one primer is • needed for the • leading strand. • A new primer is • needed for each • Okazaki fragment.

  32. Enzymes involved in DNA replication: • 1. Primase: • 2. DNA Polymerase: • 3. DNA Ligase: Creates a primer. Adds nucleotides to the 3’ end; replaces RNA primer. Joins the Okazaki fragments. • Helicase: Untwists DNA and separates • the template strands at the replication • fork. • Single-strand binding proteins: keep • the template strands apart during • replication.

  33. Enzymes proofread DNA during replication • and repair existing damaged DNA. • Mistakes during DNA synthesis can • occur at a rate of one error per 10,000 • base pairs. • DNA Polymerase proofreads the new • DNA strand. If there is a mistake, DNA • polymerase removes the incorrect • nucleotide and resumes synthesis. • After proofreading, the error rate is • one per billion nucleotides.

  34. Harmful chemicals, radioactive emissions, • X-rays, and ultraviolet light can change • nucleotides. Also, under normal cellular conditions, DNA can undergo spontaneous mutations. • There are over 130 enzymes that help • repair damaged and mutated DNA. • Defects in enzymes that help repair • mismatched nucleotides are associated • with colon cancer. • Nucleases are enzymes that excise • (cut out) damaged nucleotides. After • they are cut out, the gap is filled in • with the correct nucleotide via DNA • polymerase and ligase.

  35. Example: The inherited disorder called Xeroderma Pigmentosum causes an individual to be very sensitive to sunlight. UV light can cause two adjacent Thymine nucleotides to form a dimer. The dimer buckles the DNA strand and interferes with DNA replication.  Causes skin cancer.

  36. The End-Replication problem: When • eukaryotic DNA replicates, a gap is left at • the 5’ end of each new strand because DNA • polymerase can only add nucleotides at the • 3’ end. Gap formed where primer previously existed.

  37. To help this problem, eukaryotic DNA • have telomeres at their ends. Telomeres • are not genes but the sequence • TTAGGG • repeated between 100 to 1,000 times. • The telomeres prevent any important • genes from being deleted over time due • DNA shortening with repeated replication. • The enzyme, telomerase, catalyzes the • lengthening of telomeres.

  38. -Telomerases have a short RNA fragment that serves as a template for a new telomere.

More Related