1 / 32

Multi-operand Addition

Multi-operand Addition Consider the Following Addition: SUM = a[0]; for (i=1; i<N; i++) { SUM = SUM + a[i]; } a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0] a[7]+a[6] a[5]+a[4] a[3]+a[2] a[1]+a[0] a[7]+a[6]+a[5]+a[4] a[3]+a[2]+a[1]+a[0]

HarrisCezar
Download Presentation

Multi-operand Addition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi-operand Addition • Consider the Following Addition: SUM = a[0]; for (i=1; i<N; i++) { SUM = SUM + a[i]; } a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0] a[7]+a[6] a[5]+a[4] a[3]+a[2] a[1]+a[0] a[7]+a[6]+a[5]+a[4] a[3]+a[2]+a[1]+a[0] a[7]+a[6]+a[5]+a[4]+a[3]+a[2]+a[1]+a[0]

  2. Multi-operand Addition a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0] a[7]+a[6] a[5]+a[4] a[3]+a[2] a[1]+a[0] a[7]+a[6]+a[5]+a[4] a[3]+a[2]+a[1]+a[0] a[7]+a[6]+a[5]+a[4]+a[3]+a[2]+a[1]+a[0] • O(lg2N) – Lower Bound – Theoretical Lower Limit • This is “Binary Reduction” Operation • Theoretical Time to Add Two Values • O(n) – Carry Ripple Operation • O(lg2n) – CLG/CLA tree/Prefix/Carry Skip/Carry Select • O(1) – Avizienis/Takagi Signed Digit Arithmetic

  3. Multiplication • Multiplication Requires Multi-operand Addition • Dot Product Requires Multi-operand Addition • Defer Carry Assimilation • Represent Intermediate Sums Redundantly

  4. Implementation Serially

  5. Implementation with Pipelining

  6. Parallel Implementation

  7. Parallel Implementation – bit level

  8. Carry Save Adders • FA Used in This Configuration is Also Known as a 3:2 Compressor

  9. Dot Notation 3:2 Compressor 2:2 Compressor

  10. Example Tree

  11. Example Tree (cont)

  12. Tabular Form Representation

  13. Adder Tree Bus Sizes

  14. Serial Carry Save Adder

  15. Wallace Tree • Previous Example is 7 Input Wallace Tree • n-input Wallace Tree Reduces k-bit Inputs to Two (k + log2n - 1)-bit Outputs • CSA Reduces Number of Operands by Factor of 1.5 • Smallest Height h(n) For an n-input Tree Can be Given by a Recurrence Relation

  16. Wallace Tree • h(n) = 1 + h(2n/3) • Ignoring Ceiling Operator Write as: h(n) = 1 + h(2n/3) • Can Get Lower Bound on Tree Height: h(n)  log1.5(n/2) • Equality for n = 2, 3 only

  17. Wallace Tree Height • Can Also Consider n(h) – Number of Inputs for a Tree of Height h • Recurrence is: n(h) = 3n(h-1)/2 • Ignoring Floor Operator Can get Bounds • Lower Bound: n(h) > 2(3/2)h-1 • Upper Bound: n(h) < 2(3/2)h • Exact Values for 0  h  20 in Table

  18. Tree Levels

  19. Wallace Versus Dadda Trees • Reduce the Number of Operands at Earliest Opportunity • m Dots Per Column – Apply m/3 Full Adders to Column • Tends to Minimize Overall Delay by Making CPA CPA as Short as Possible • Delay of Fast CPA is Generally Not Smoothly Increasing Function of Word Width • EXAMPLE: CLA Has Essentially Same Delay for Widths of 17-32 Bits • Dadda Tree Reduces Number of Operands to Next Lower Number Using the Fewest FAs and HAs as Possible • Justification is No Need to Reduce Number of Operands to Next Lower n(h) in Tree Since A Faster Tree Would Not Result

  20. Wallace Tree

  21. Dadda Tree

  22. Parallel Counters • Single-bit Full Adder Referred to as (3:2) Counter (or Compressor) • Meaning is it “Counts” the Ones in 3 Input Bits • Can be Generalized to (n : log2(n+1) Counter • Has n Inputs • Produces a log2(n+1)-bit Binary Output Representing the Number of 1’s Among the n Inputs • Next Example Shows a (10:4) Counter

  23. (10:4) Parallel Counter

  24. Generalized Parallel Counters • Parallel Counter Reduces Number of Dots in a Column (same Radix Position) • Output Dots are Placed into Different Positions (one each) • Can Generalize This Notion • Generalized Parallel Counter Receives “Dot Patterns” as Input (not Necessarily in Same Bit Position) • Converts Them to Other Dot Patterns (not Necessarily one in Each Column) • If Output Dot Pattern Has Fewer Dots Than Input, the Counter is a Compressor and Can be Used for a Tree

  25. Generalized Parallel Counters • Characterized by Number of Dots in Each Input Column and Output Column • Book Limits to Class of Counters that Output a Single Dot in Each Column • Limitation Allows Output to be Characterized by Single Integer Representing Number of Columns Spanned by Output • Input Side is Characterized by Integer Sequence Corresponding to Number of Inputs in Various Columns

  26. (5,5 : 4) Parallel Counter • Dot Notation for (5,5 : 4) Counter • (5,5 : 4) Counters to Compress 5 Numbers to 2 Numbers • Can Have Other Forms, eg. ( 4,6 : 4) Counter • Receives 6 bits of weight 1 and 4 bits of weight 2 • Delivers the Weighted Sum in the Form of a 4-bit Binary Number • This Type Requires Sum of Output Weights to Equal or Exceed Sum of Input Weights

  27. Generalized Parallel Counters • Powerful Concept – 4-bit Binary Full Adder Can be Viewed as (2,2,2,3 : 5)-counter • Goal is to Reduce n Numbers to 2 Numbers in Carry-Save Adder • Sometimes Notation of (n : 2)-counter is Used Although it Strictly Doesn’t Make Sense for n > 3 • (n : 2)-counter is Shorthand Notation for a Slice of a Circuit • When Slice is Replicated, n Values are Reduced to 2 Values • Slice i Receives n Input Bits in Position i Plus Transfer (or Carry) Bits From One or More Positions to Right (i - 1, i - 2, etc.) • Slice i Produces Output Bits in Positions i and i + 1 Plus Transfer Digits Into Higher Positions (i + 1, i + 2, etc.) • yj Denotes Number of Transfer bits From Slice i to i + j

  28. (n : 2) Parallel Counters • Must Satisfy This Inequality for Scheme to Work • 3 Represents Maximum of 2 Output Bits • eg. (7 : 2)-counter can be Built Allowing y1 = 1 - Transfer bit From Position i to i + 1 and y2=2 - Transfer bit into Position i + 2

  29. Adding Multiple Signed Numbers • Must Sign Extend 2’s Complement Numbers to Final Result Width • Appears Sign Extension Could Dramatically Increase Complexity of CSA Tree for Large n • Trick is to Take Advantage of Fact that all Sign Extension bits are Identical • Use a Single Full Adder to do Job of Several Full Adders • Allows CSA Internal Widths to be Marginally Increased

  30. Hardware Sharing Method Single Full Adder Used Here With Result Fanned Out

  31. Negative Weight Interpretation • Recall That 2’s Complement Values May be Interpreted as: • Replace Negative Sign Bit by it’s Complement and Put a -1 in Sign Column • Multiple –1’s Can be Combined Each Pair Placed in –1 in Next Higher Column • A Solitary –1 in a Column is Replaced by a +1 in That Column and a –1 in the Next Higher Column

  32. Negative Weight Interpretation • Complement Three Sign Bits and Place –1’s in Sign Column • Replace Three –1’s by a +1 in Sign Position and Two –1’s in Next Higher Position • These Two –1’s are Removed and Single –1 is Inserted in Position k + 1 • Latter –1 is in Turn Replaced by a + 1 in Position k + 1 and a – 1 in Position k + 2 • Finally a –1 Moves Out of the Resultant Sum Width and the Procedure Stops

More Related