1 / 57

The Pentafluorosulfanyl Group: A Substituent is Born

The Pentafluorosulfanyl Group: A Substituent is Born. Joseph B. Binder Raines Lab September 14, 2006. “Substituent of the Future”. A. M. Thayer, Chem. Eng. News 2006 , 84 , 27-32. . Outline. Background Synthetic Strategies: Aliphatics Synthetic Strategies: Aromatics Applications

Download Presentation

The Pentafluorosulfanyl Group: A Substituent is Born

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Pentafluorosulfanyl Group:A Substituent is Born Joseph B. Binder Raines Lab September 14, 2006

  2. “Substituent of the Future” A. M. Thayer, Chem. Eng. News 2006, 84, 27-32.

  3. Outline • Background • Synthetic Strategies: Aliphatics • Synthetic Strategies: Aromatics • Applications • Conclusions and Outlook

  4. Why Fluorinate Organics? • Fluorination imparts unusual properties • Small size • Lipophilic • High electronegativity • Low reactivity W. R. Dolbier, Jr.,Chimica Oggi 2003, 21, 66-69.

  5. Options for Fluorination • Why choose –SF5? • More bulky • More lipophilic • More electron-withdrawing • More chemically inert W. R. Dolbier, Jr.,Chimica Oggi 2003, 21, 66-69.

  6. Properties: Size • Very bulky • Larger cross-sectional area than –CF3 P. G. Nixon, et al., Chem. Mater. 2000, 12, 3108-3112.

  7. Properties: Lipophilicity • πx = logPx – logPH (P = 1-octanol/water partition coefficient) • πx can correlate with bioavailability R. E. Banks (Ed.), Organofluorine Chemicals and Their Industrial Applications, 1979.

  8. Properties: Electronics • Electron-withdrawing W. A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3072-76; C. J. Byrne, et al., J. Chem. Soc., Perkin Trans. 2 1987, 1649-53; J. Shorter, Pure Appl. Chem. 1997, 69, 2497-2510.

  9. Properties: Stability • Typically thermally stable >300 °C • Inert to wide range of transformations • More stable than –CF3 W. A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3064-72; R. D. Bowden, et al., Tetrahedron 2000, 56, 3399-3408.

  10. Outline • Background • Synthetic Strategies: Aliphatics • Vigorous Fluorination • SF5X Addition • Incorporation of -SF5 Building Blocks • Synthetic Strategies: Aromatics • Applications • Conclusions and Outlook

  11. First Organic –SF5 Derivative • Unexpected product • Attempted preparation of CF3SF • Produced more highly fluorinated CF3SF5 • Attractive properties sparked interest • Very chemically inert • Excellent electrical insulator G. A. Silvey, et al., J. Am. Chem. Soc. 1950, 72, 3624-6; R. Geballe, et al., J. Appl. Phys. 1950, 21, 592-4.

  12. Vigorous Fluorination • Harsh conditions • Many side products • Electrochemical • Elemental Fluorine F. W. Hoffmann, et al., J. Am. Chem. Soc. 1957, 79, 3424-9; A. F. Clifford, et al., J. Chem. Soc. 1953, 2372-5; H. N. Huang, et al., Inorg. Chem. 1991, 30, 789-94.

  13. SF5X Addition • Photochemical addition • Allows introduction of –SF5 selectively at unsaturation • Requires specialized conditions V. K. Brel, Synthesis 2005, 1245-1250; J. R. Case, et al., J. Chem. Soc. 1961, 2066-70.

  14. SF5X Addition • Thermal addition • Effective with both SF5Cl and more reactive SF5Br • Requires specialized conditions • Side reactions include formal XF addition J. R. Case, et al., J. Chem. Soc. 1961, 2066-70; R. Winter, et al., J. Fluorine Chem. 2001, 107, 23-30; R. Winter, et al., J. Fluorine Chem. 2000, 102, 79-87.

  15. SF5X Addition: Mechanism • Mechanistic observations A. D. Berry, et al., J. Org. Chem. 1978, 43, 365-7.

  16. SF5X Addition: Mechanism • Proposed mechanism • Consistent with stereochemical outcome • Sterically governed ·SF5 addition A. D. Berry, et al., J. Org. Chem. 1978, 43, 365-7.

  17. SF5X Addition: Et3B Initiation • Allows moderate conditions • Avoids side reactions • Ineffective with electron-deficient alkenes W.R. Dolbier, et al. J. Fluorine Chem. In Press; S. A. Mohand, et al., Org. Lett. 2002, 4, 3013-3015.

  18. Versatility of –SF5 Derivatives • Cycloadditions • Diels-Alder reaction • [3+2] Dipolar cycloadditions V. K. Brel, Synthesis 2006, 339-343; F. W. Hoover, et al., J. Org. Chem. 1964, 29, 3567-70; V. K. Brel, Synthesis 2006, 2665-267-0.

  19. Versatility of –SF5 Alkyl Halides P. G. Nixon, et al., J. Fluorine Chem. 2004, 125, 553-560; R. P. Singh, et al., Inorg. Chem. 2003, 42, 6142-6146; P. G. Nixon, et al., J. Fluorine Chem. 1998, 91, 13-18; R. J. Terjeson, et al., J. Fluorine Chem. 1997, 82, 73-78; R. Winter, et al., Chem. Mater. 1999, 11, 3044-3049.

  20. Synthetic Strategies: Aliphatics • Initially limited to harsh fluorinations • Selective SF5X addition preferred • More accessible through Et3B initiation • Versatility of aliphatic SF5-derivatives

  21. Outline • Background • Synthetic Strategies: Aliphatics • Synthetic Strategies: Aromatics • Vigorous Fluorination • SF5X Addition • Incorporation of -SF5 Building Blocks • Applications • Conclusions and Outlook

  22. AgF2 Fluorination • First reported by Sheppard • Versatile reactivity of –SF5 benzenes W. A. Sheppard, J. Am. Chem. Soc. 1960, 82, 4751-2; W. A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3064-72.

  23. AgF2 Fluorination: Further Study • Extended to o-fluorine substituents • Steric bulk may stop reaction at -SF3 stage • o-Substituent may be interchanged A. M. Sipyagin, et al., J. Fluorine Chem. 2001, 112, 287-295.

  24. AgF2 Fluorination: Further Study • Investigation of electronic effects • Electron-poor substrate essential • May be limited to –NO2 and -CF3 A. M. Sipyagin, et al., J. Fluorine Chem. 2001, 112, 287-295.

  25. Direct Fluorination • F2 fluorination recently achieved • Improved yield relative to AgF2 process • Extended to other substituents including –CF3 • Less expensive but operationally difficult R. D. Bowden, et al., Tetrahedron 2000, 56, 3399-3408.

  26. SF5X Addition • Et3B-catalyzed addition • No extensive purification until final step • High yielding and operationally simple • De novo aryl ring synthesis • Allows unusual substitution patterns T. A. Sergeeva, et al., Org. Lett. 2004, 6, 2417-2419; F. W. Hoover, et al., J. Org. Chem. 1964, 29, 3567-70.

  27. Building Block Approach • Many m-, p-SF5 derivatives available • Allow a variety of transformations R. D. Bowden, et al., Tetrahedron 2000, 56, 3399-3408.

  28. Synthetic Strategies: Aromatics • Accessible with AgF2 or F2 • Requires electron-poor substrates • May be constructed from aliphatics • Participate in usual aromatic reactions • Convenient building blocks available

  29. Outline • Background • Synthetic Strategies: Aliphatics • Synthetic Strategies: Aromatics • Applications • Thin films and polymers • Liquid crystals • Biologically-active compounds • Conclusions and Outlook

  30. Applications of -SF5 Derivatives • Often used as –CF3 replacement • Yet displays unique behavior

  31. Polyimide Polymers • High performance condensation polyimides • Thermal stability • Strength • Flexibility • Trifluoromethylation • More transparent • Better properties for electronics • Increased strength P. M. Hergenrother, Angew. Chem., Int. Ed. Engl. 1990, 29, 1262-8.

  32. SF5-Functionalized Polyimides • Properties of –SF5 may enhance polyimides • DASP condensed with several dianhydrides DASP A. Jesih, et al., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1993, 34, 383-4; A. K. St. Clair, et al., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1993, 34, 385-6.

  33. SF5-Functionalized Polyimides • Improved glass transition temperature (Tg) • Average 13°C higher than –CF3 analog • Allows use at higher temperatures, harsher conditions • Consistently higher density • Lower solubility Tg = 305 °C ε (10 GHz) = 2.51 ρ = 1.559 g/cm3 Colorless A. K. St. Clair, et al., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1993, 34, 385-6; A. K. St. Clair, et al., US Pat. 5,302,692 1994.

  34. SF5-Functionalized Polyacrylates • Monomer synthesis: • Photoinitiated polymerization • Homopolymer or copolymer with HEMA R. Winter, et al., Chem. Mater. 1999, 11, 3044-3049.

  35. X-Ray Photoelectron Spectroscopy • Quantitative elemental analysis for surfaces • Identify elements and bonding state • Analyzed thickness depends on angle of incidence (θ) • Limited by photoelectron mean free path • Increasing angle reduces the accessible depth H. R. Thomas, et al., Macromolecules 1979, 12, 323-329.

  36. SF5-Functionalized Polyacrylates • XPS of copolymer: • 50Å depth, varying %HEMA • Nonstoichiometric -SF5 surface enrichment R. Winter, et al., Chem. Mater. 1999, 11, 3044-3049.

  37. SF5-Functionalized Polyacrylates • XPS of 1% SF5-monomer film • Varying composition controls depth of fluorous layer • Surface enrichment of –SF5 side chains • Fluorous components “bloom” to surface • Allows unique surface chemistry at low monomer% Composition Depth Profile R. Winter, et al., Chem. Mater. 1999, 11, 3044-3049.

  38. Liquid Crystals: Design • Twisted-nematic cell: • Switching voltage affects power usage • Voltage response determined by dielectric anisotropy (Δε) • Δεcorrelates with molecular dipole P. Kirsch, et al., Angew. Chem., Int. Ed. 2000, 39, 4216-4235;

  39. Liquid Crystals: Design • Improve Δε with polarizing head groups • -CN head group solvates ionic impurities • -SF5 combines high dipole moment and lipophilicity for excellent LC properties Prototypic Liquid Crystal (LC)Scaffold P. Kirsch, et al., Angew. Chem., Int. Ed. 2000, 39, 4216-4235; P. Kirsch, et al., Angew. Chem., Int. Ed. 1999, 38, 1989-1992.

  40. Liquid Crystals: Synthesis P. Kirsch, et al., Angew. Chem., Int. Ed. 1999, 38, 1989-1992.

  41. Liquid Crystals: Synthesis P. Kirsch, et al., Angew. Chem., Int. Ed. 1999, 38, 1989-1992.

  42. Liquid Crystals: Results • Δεimproved, but lower than anticipated • Calculated vs. experimental structure • Suggests o-substitution may improve Δε C-S-Feq angle αcalc = 95.6° αexp = 92.3° P. Kirsch, et al., Angew. Chem., Int. Ed. 1999, 38, 1989-1992.

  43. Liquid Crystals: o-Substitution • o-Fluorination enhances Δε • o-Fluorination reduces -SF5 contribution P. Kirsch, et al., Eur. J. Org. Chem. 2005, 3095-3100.

  44. Liquid Crystals: Trifluoromethylation • Axial-CF3 expected to increase polarity • Reduced polarity may result from deformed C-S-Feq angle • Promising for bioactive compounds P. Kirsch, et al., Eur. J. Org. Chem. 2006, 1125-1131.

  45. Biologically-Active Compounds • Provides a means to modulate activity • May improve bioavailability Insecticide Pharmaceutical

  46. Pesticides: Fipronil • Fipronil introduced in US by Rhône-Poulenc in 1996 • Marketed in Frontline®, Maxforce®, Combat® for flea/tick, roach control • Blocks GABA-gated chloride channels M. J. O'Neil (Ed.), The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th ed., 2001.

  47. Pesticides: SF5-Fipronil • Synthesis P. J. Crowley, et al., Chimia 2004, 58, 138-142.

  48. Pesticides: Results • SF5-fipronil consistently more potent P. J. Crowley, et al., Chimia 2004, 58, 138-142; R. Salmon, Int. Pat. App. WO 9306089 1993. http://www.arkive.org/species/ARK/invertebrates_terrestrial_and_freshwater/Musca_domestica/

  49. NHE Inhibitors • Sodium-proton exchangers (NHEs) • Maintain intracellular pH • Seven identified isoforms (1-7) • NHE1 expressed in cardiac tissue, platelets • Involved in ischaemia and reperfusion injuries • NHE inhibitors protect tissues during • heart attack • organ transplant • cancer chemotherapy B. Masereel, et al., Eur. J. Med. Chem. 2003, 38, 547-554.

  50. Benzoylguanidine NHE Inhibitors • Guanidinium mimics Na+ to block transport • Benzoylguanidines more NHE1 selective • HOE-694 among the first of class • Enhanced by lipophilic bulk at 4-position HOE-694 A. Schmid, et al., Biochem. Biophys. Res. Commun. 1992, 184, 112-17; L. Counillon, et al., Mol. Pharmacol. 1993, 44, 1041-5; M. Baumgarth, et al., J. Med. Chem. 1997, 40, 2017-2034.

More Related