620 likes | 1.01k Views
As p ginas na base de dados s o c pias das p ginas encontradas na Web ... Page Refresh Policies For Web Crawlers. Optimal Crawling Strategies for Web Search Engines ...
E N D
Slide 1:INF 2914Web Search
Lecture 2: Crawlers
Slide 2:Today’s lecture
Crawling
Slide 3:Basic crawler operation
Begin with known “seed” pages Fetch and parse them Extract URLs they point to Place the extracted URLs on a queue Fetch each URL on the queue and repeat
Slide 4:Crawling picture
Unseen Web Seed pages
Slide 5:Simple picture – complications
Web crawling isn’t feasible with one machine All of the above steps distributed Even non-malicious pages pose challenges Latency/bandwidth to remote servers vary Webmasters’ stipulations How “deep” should you crawl a site’s URL hierarchy? Site mirrors and duplicate pages Malicious pages Spam pages Spider traps – incl dynamically generated Politeness – don’t hit a server too often
Slide 6:What any crawler must do
Be Polite: Respect implicit and explicit politeness considerations for a website Only crawl pages you’re allowed to Respect robots.txt (more on this shortly) Be Robust: Be immune to spider traps and other malicious behavior from web servers
Slide 7:What any crawler should do
Be capable of distributed operation: designed to run on multiple distributed machines Be scalable: designed to increase the crawl rate by adding more machines Performance/efficiency: permit full use of available processing and network resources
Slide 8:What any crawler should do
Fetch pages of “higher quality” first Continuous operation: Continue fetching fresh copies of a previously fetched page Extensible: Adapt to new data formats, protocols
Slide 9:Updated crawling picture
Unseen Web Seed Pages URL frontier Crawling thread
Slide 10:URL frontier
Can include multiple pages from the same host Must avoid trying to fetch them all at the same time Must try to keep all crawling threads busy
Slide 11:Explicit and implicit politeness
Explicit politeness: specifications from webmasters on what portions of site can be crawled robots.txt Implicit politeness: even with no specification, avoid hitting any site too often
Slide 12:Robots.txt
Protocol for giving spiders (“robots”) limited access to a website, originally from 1994 www.robotstxt.org/wc/norobots.html Website announces its request on what can(not) be crawled For a URL, create a file URL/robots.txt This file specifies access restrictions
Slide 13:Robots.txt example
No robot should visit any URL starting with "/yoursite/temp/", except the robot called “searchengine": User-agent: * Disallow: /yoursite/temp/ User-agent: searchengine Disallow:
Slide 14:Processing steps in crawling
Pick a URL from the frontier Fetch the document at the URL Parse the URL Extract links from it to other docs (URLs) Check if URL has content already seen If not, add to indexes For each extracted URL Ensure it passes certain URL filter tests Check if it is already in the frontier (duplicate URL elimination) E.g., only crawl .edu, obey robots.txt, etc. Which one?
Slide 15:Basic crawl architecture
WWW Fetch DNS Parse Content seen? URL filter Dup URL elim Doc FP’s URL set URL Frontier robots filters
Slide 16:DNS (Domain Name Server)
A lookup service on the internet Given a URL, retrieve its IP address Service provided by a distributed set of servers – thus, lookup latencies can be high (even seconds) Common OS implementations of DNS lookup are blocking: only one outstanding request at a time Solutions DNS caching Batch DNS resolver – collects requests and sends them out together
Slide 17:Parsing: URL normalization
When a fetched document is parsed, some of the extracted links are relative URLs E.g., at http://en.wikipedia.org/wiki/Main_Page we have a relative link to /wiki/Wikipedia:General_disclaimer which is the same as the absolute URL http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer During parsing, must normalize (expand) such relative URLs
Slide 18:Content seen?
Duplication is widespread on the web If the page just fetched is already in the index, do not further process it This is verified using document fingerprints or shingles
Slide 19:Filters and robots.txt
Filters – regular expressions for URL’s to be crawled/not Once a robots.txt file is fetched from a site, need not fetch it repeatedly Doing so burns bandwidth, hits web server Cache robots.txt files
Slide 20:Duplicate URL elimination
For a non-continuous (one-shot) crawl, test to see if an extracted+filtered URL has already been passed to the frontier For a continuous crawl – see details of frontier implementation
Slide 21:Distributing the crawler
Run multiple crawl threads, under different processes – potentially at different nodes Geographically distributed nodes Partition hosts being crawled into nodes Hash used for partition How do these nodes communicate?
Slide 22:Communication between nodes
The output of the URL filter at each node is sent to the Duplicate URL Eliminator at all nodes WWW Fetch DNS Parse Content seen? URL filter Dup URL elim Doc FP’s URL set URL Frontier robots filters Host splitter To other hosts From other hosts
Slide 23:URL frontier: two main considerations
Politeness: do not hit a web server too frequently Freshness: crawl some pages more often than others E.g., pages (such as News sites) whose content changes often These goals may conflict each other.
Slide 24:Politeness – challenges
Even if we restrict only one thread to fetch from a host, can hit it repeatedly Common heuristic: insert time gap between successive requests to a host that is >> time for most recent fetch from that host
Slide 25:URL frontier: Mercator scheme
Prioritizer Biased front queue selector Back queue router Back queue selector K front queues B back queues Single host on each URLs Crawl thread requesting URL
Slide 26:Mercator URL frontier
Front queues manage prioritization Back queues enforce politeness Each queue is FIFO
Slide 27:Front queues
Prioritizer 1 K Biased front queue selector Back queue router
Slide 28:Front queues
Prioritizer assigns to URL an integer priority between 1 and K Appends URL to corresponding queue Heuristics for assigning priority Refresh rate sampled from previous crawls Application-specific (e.g., “crawl news sites more often”)
Slide 29:Biased front queue selector
When a back queue requests a URL (in a sequence to be described): picks a front queue from which to pull a URL This choice can be round robin biased to queues of higher priority, or some more sophisticated variant Can be randomized
Slide 30:Back queues
Biased front queue selector Back queue router Back queue selector 1 B Heap
Slide 31:Back queue invariants
Each back queue is kept non-empty while the crawl is in progress Each back queue only contains URLs from a single host Maintain a table from hosts to back queues
Slide 32:Back queue heap
One entry for each back queue The entry is the earliest time te at which the host corresponding to the back queue can be hit again This earliest time is determined from Last access to that host Any time buffer heuristic we choose
Slide 33:Back queue processing
A crawler thread seeking a URL to crawl: Extracts the root of the heap Fetches URL at head of corresponding back queue q (look up from table) Checks if queue q is now empty – if so, pulls a URL v from front queues If there’s already a back queue for v’s host, append v to q and pull another URL from front queues, repeat Else add v to q When q is non-empty, create heap entry for it
Slide 34:Number of back queues B
Keep all threads busy while respecting politeness Mercator recommendation: three times as many back queues as crawler threads
Slide 35:Determinando a frequência de atualização de páginas
Estudar políticas de atualização de uma base de dados local com N páginas As páginas na base de dados são cópias das páginas encontradas na Web Dificuldade Quando uma página da Web é atualizada o crawler não é informado
Slide 36:Framework
Medindo o quanto o banco de dados esta atualizado Freshness F(ei,t)=1 se a página ei esta atualizada no instante 1 e 0 caso contrário F(S,t): Freshness médio da base de dados S no instante t Age A(ei,t) = 0 se ei esta atualizada no instante t e t-tm(ei) onde tm é o instante da última modificação de ei A(S,t) : Age médio da base de dados S no instante t
Slide 37:Framework
Utiliza-se o freshness (age) médio ao longo do tempo para comparar diferentes políticas de atualização de páginas
Slide 38:Framework
Processo de Poisson (N(t)) Processo estocástico que determina o número de eventos ocorridos no intervalo [0,t] Propriedades Processo sem memória: O número de eventos que ocorrem em um intervalo limitado de tempo após o instante t independe do número de eventos que ocorreram antes de t
Slide 39:Framework
Hipótese: Um processo de Poisson é uma boa aproximação para o modelo de modificação de páginas Probabilidade de uma página ser modificada pelo menos uma vez no intervalo (0,t] Quanto maior a taxa ?, maior a probabilidade de haver mudança
Slide 40:Framework
Probabilidade de uma página ser modificada pelo menos uma vez no intervalo (0,t] Quanto maior a taxa ?, maior a probabilidade de haver mudança
Slide 41:Framework
Evolução da base de dados Taxa uniforme de modificação (único ?) É razoável quando não se conhece o parâmetro Taxa não uniforme de modificação (um ? diferente para cada página)
Slide 42:Políticas de Atualização
Frequência de Atualização Deve-se decidir quantas atualizações podem ser feitas por unidade de tempo Assumimos que os N elementos são atulizados em I unidades de tempo Diminuindo I aumentamos a taxa de atualização A relação N/I depende do número de cralwlers, banda disponível, banda nos servidores, etc.
Slide 43:Políticas de Atualização
Alocação de Recursos Após decidir quantos elementos atualizar devemos decidir a frequência de atualização de cada elemento Podemos atualizar todos elementos na mesma taxa ou atualizar mais frequentemente elementos que se modificam com maior frequência
Slide 44:Políticas de Atualização
Exemplo Um banco de dados contem 3 elementos {e1,e2,e3} As taxas de modificação 4/dia , 3/dia e 2/dia, respectivamente. São permitidas 9 atualizações por dia Com que taxas as atualizações devem ser feita ?
Slide 45:Políticas de Atualização
Política Uniforme 3 atualizações / dia para todas as páginas Política Proporcional: e1: 4 atualizações / dia e2: 3 atualizaões /dia e3: 2 atualizações /dia Qual da políticas é melhor ?
Slide 46:Política ótima
Calculando a frequência de atualização ótima. Dada uma frequência média f=N/I e a taxa média ? i para cada página, deve-se calcular a frequência fi com que cada página i deve ser atualizada
Slide 47:Política Ótima
Considere um banco de dados com 5 elementos e com as seguintes taxas de modificação 1,2,3,4 e 5. Assumindo que 5 atualizações por dias são possíveis.
Slide 48:Política Ótima
Frequência de atualização ótima. Para maximizar o freshness temos a seguinte curva
Slide 49:Política Ótima
Maximizando o Freshenss Páginas que se modificam pouco devem ser pouco atualizadas Páginas que se modificam demais devem ser pouco atualizadas Uma atualização consome recurso e garante o freshness da página atualizada por muito pouco tempo
Slide 50:Experimentos
Foram escohidos 270 sites. Para cada um destes 3000 páginas são atualizadas todos os dias. Experimentos realizados de 9PM as 6AM durante 4 meses 10 segundos de intervalo entre requisições ao mesmo site
Slide 51:Estimando frequências de modificação
O intervalo médio de modificação de uma página é estimado dividindo o período em que o experimento foi realizado pelo total de modificações no período
Slide 52:Experimentos
Verificação do processo de Poisson Seleciona-se as páginas que se modificam a uma taxa média (e.g. a cada 10 dias) e plota-se a distribuição do intervalo de mudanças
Slide 53:Verificando o Processo de Poisson
Eixo horizontal: tempo entre duas modificações Eixo vertical: fração das modificações que ocorreram no dado intervalo As retas são as predições Para a páginas que se modificam muito e páginas que se modificam muito pouco não foi possível obter conclusões.
Slide 54:Alocação de Recursos
Baseado nas frequências estimadas, calcula-se o freshness esperado para cada uma das três políticas consideradas. Consideramos que é possível visitar 1Gb páginas/mês
Slide 55:Resources
IIR 20 See also Effective Page Refresh Policies For Web Crawlers Cho& Molina
Slide 56:Trabalho 2 - Proposta
Estudar políticas de atualização de páginas Web Effective Page Refresh Policies For Web Crawlers Optimal Crawling Strategies for Web Search Engines User-centric Web crawling http://www.cs.cmu.edu/~olston/publications/wic.pdf
Slide 57:Trabalho 3- Proposta
Estudar políticas para distribuição de Crawlers Parallel Crawlers Realizar pesquisa bibliográfica em artigos que citam este
Slide 58:Parallel crawling
Why? Aggregate resources of many machines Network load dispersion Issues Quality of pages crawled (as before) Communication overhead Coverage; Overlap
Slide 59:Parallel crawling approach [Cho+ 2002]
Partition URL’s; each crawler node responsible for one partition many choices for partition function e.g., hash(host IP) What kind of coordination among crawler nodes? 3 options: firewall mode cross-over mode exchange mode
Slide 60:Coordination of parallel crawlers
i h g f e d a c b crawler node 1 crawler node 2 modes: ? firewall ? cross-over ? exchange
Slide 61:Empirical findings by Cho+
Firewall has acceptable coverage if number of crawler nodes small (<= 4) Exchange incurs small overhead (< 1% of network bandwidth) Can reduce exchanges by replicating the most popular URL’s
Slide 62:Trabalho 4 - Proposta
Google File System Map Reduce http://labs.google.com/papers.html
Slide 63:Trabalho 5 - Proposta
XML Parsing, Tokenization, and Indexing