561 likes | 2.39k Views
POLÍGONOS. Definição; Polígonos Convexos e não-Convexos; Diagonais de um polígono Convexo; Soma dos ângulos internos de um triângulo; Soma dos ângulos internos de um polígono convexo; Profª. Valéria Espíndola Lessa outubro/2009. Existem dois tipos de linhas:.
E N D
POLÍGONOS Definição; Polígonos Convexos e não-Convexos; Diagonais de um polígono Convexo; Soma dos ângulos internos de um triângulo; Soma dos ângulos internos de um polígono convexo; Profª. Valéria Espíndola Lessa outubro/2009
Existem dois tipos de linhas: • As linhas formadas por CURVAS: • As linhas formadas por segmentos de RETAS: Linha Poligonal
Linhas Poligonais: Formam duas regiões: interna e externa Polígono
Definição de Polígono Polígono é uma linha poligonal fechada e simples com sua região interna e externa. Pode ser convexo e não-convexo.
Diagonais de um Polígono Convexo • Diagonal de um polígono é um segmento de reta que tem por extremidades dois vértices não-consecutivos do polígono. A B
Número de Diagonais de um Polígono Convexo • Seja n o número de vértices; • Cada vértice faz ligação com todos os outros n vértices, menos com seus adjacentes e ele próprio, ou seja, com (n – 3) vértices; • Como há n vértices, então podemos fazer n.(n – 3) ligações; • Porém, estaremos contabilizando duas vezes a mesma ligação, isto é, diagonal. Por exemplo: A diagonal de vai do vértice A até o C é a mesma que vai do C até o A. • Portanto: A C
Ângulos de um Polígono Ângulo externo β Ângulo interno α α + β = 180º
Soma dos Ângulos Internos de um Triângulo: http://www2.mat.ufrgs.br/edumatec/atividades_diversas/teoremas_geometria/Objetos/GeometriaPlana.swf Soma dos ângulos internos de um triângulo é sempre 180º
Soma dos ângulos interno de um polígono convexo Todo polígono convexo pode ser decomposto em triângulos quando traçamos as diagonais que partem de um único vértice: 4 lados 2 triângulos (4 – 2) 2 x 180º = 360º 5 lados 3 triângulos (5 – 2) 3 x 180º = 540º 6 lados 4 triângulos (6 – 2) 4 x 180º = 720º
Então, a soma dos ângulos internos depende do número de lados; • A quantidade de triângulos será sempre o números de lados menos 2; • Portanto:
Ângulos de Polígonos Regulares • Polígonos regulares tem todos os lados e ângulos de mesma medidas; • Então, a medida de seu ângulo interno é a soma deles dividida pelo número de lados: ou
Referências: • BARROSO, J.M. Projeto Araribá: matemática 9º ano. 2.ed. São Paulo: Moderna, 2007. • http://www.edumatec.mat.ufrgs.br/ • http://www2.mat.ufrgs.br/edumatec/atividades_diversas/teoremas_geometria/Objetos/GeometriaPlana.swf