830 likes | 1.45k Views
Bioactive Compounds from Marine “Plants and Microorganisms”. Bioactive Compounds from Vascular Plants. Bioactive Compounds from Algae (Part 1) Macroalgae Microalgae (Part 1). Five Kingdoms of Biological Diversity. Monera (“Prokaryotes”). Protista. Plantae. Fungi. Animalia.
E N D
Bioactive Compounds from Marine “Plants and Microorganisms” Bioactive Compounds from Vascular Plants Bioactive Compounds from Algae (Part 1) Macroalgae Microalgae (Part 1)
Five Kingdoms of Biological Diversity Monera (“Prokaryotes”) Protista Plantae Fungi Animalia
Five Kingdoms of Biological Diversity Monera (“Prokaryotes”) Protista Plantae Fungi Animalia
Plant Kingdom: Transition to Land “Bryophytes” “Ferns” and Relatives Vascular Plants Gymnosperms (Conifers and Cycads) Seed Plants Lilliopsida (monocotyledons) Angiosperms a.k.a. Magnoliophyta (“Flowering Plants”) Magnoliopsida (dicotyledons)
Aquatic Plants Division Magnoliophyta Class Lilliopsida Order Alismatales Family Alismataceae Family Aponogetonaceae Family Araceae Family Butomaceae Family Cymodoceaceae Family Hydrocharitaceae Family Juncaginaceae Family Limnocharitaceae Family Posidoniaceae Family Potamogetonaceae Family Ruppiaceae Family Scheuchzeriaceae Family Tofieldiaceae Family Zosteraceae
Aquatic Plants Division Magnoliophyta Class Lilliopsida Order Alismatales Family Alismataceae Family Aponogetonaceae Family Araceae Family Butomaceae Family Cymodoceaceae Family Hydrocharitaceae Family Juncaginaceae Family Limnocharitaceae Family Posidoniaceae Family Potamogetonaceae Family Ruppiaceae Family Scheuchzeriaceae Family Tofieldiaceae Family Zosteraceae “Seagrass”
Bioactive Compounds from Seagrasses: Antiinflammatory Constituents from Zostera japonica TNFa IL-1b Hexane Fraction (H5) from Z. japonica Inhibits Release of Tumor Necrosis Factor (TNF)and Interleukin (IL)
Bioactive Compounds from Seagrasses: Antiinflammatory Constituents from Zostera japonica Fatty Acids are the Major Constituents of Fraction H5
“Mangroves” 16 Plant Families Major Components: Acanthacaeae - e.g. Avicennia spp. (“Black Mangrove”) Combretaceae - e.g. Laguncularia spp. (“White Mangrove”) Rhizophoraceae - e.g. Rhizophora spp. (“Red Mangrove”)
Bioactive Compounds from Mangroves: Antiinflammatory Compounds from Rhizophora mangle (Red Mangrove) Low Molecular Weight Polyphenols Extracted from R. mangle Inhibit COX-2 and PLA2
Bioactive Compounds from Marine “Plants and Microorganisms” Bioactive Compounds from Vascular Plants Bioactive Compounds from Algae (Part 1) Macroalgae Microalgae (Part 1)
What Are Algae? Monera (“Prokaryotes”) Protista Plantae Fungi Animalia
What Are Algae? Monera (“Prokaryotes”) “Algae” Protista Plantae Fungi Animalia
“Microalgae” “Macroalgae” What Are Algae? Prokaryotic Kingdom Monera (Bacteria) Cyanobacteria (“Blue-Green Algae”) Eukaryotic Kingdom Protista Dinophyta (“Dinoflagellates”) Raphidophyta (“Raphidophytes”) Bacillariophyta (“Diatoms”) Chrysophyta (“Golden Algae”) Chlorophyta (“Green Algae”) Phaeophyta (“Brown Algae”) Rhodophyta (“Red Algae”)
Pigments and Algae PBs4 Chl a1bcdCar. 2Xanth.3PC5PE6 Cyanobacteria x x x Dinoflagellata x x x x Bacillariophyta x x x x Chrysophyta x x x x Chlorophyta x x x Phaeophyta x x x x Rhodophyta x x x x 1Chl = Chlorophyll; 2Car. = Carotenoids; 3Xanth. = Xanthophylls; 4PB = Phycobilins (Phycobiloproteins); 5PC = Phyocyanin; 6PE = Phycoerythrin
Macroalgae Chlorophyta (“Green Algae”) Phaeophyta (“Brown Algae”) Rhodophyta (“Red Algae”)
Bioactive Compounds from Chlorophyta: Capisterones A and B A R = Ac B R = H
Capisterones A (1) and B (2) Reverse Fluconazole-Resistance Xing-Cong et al. (2005) J. Nat. Prod., 69: 542-6
Yeast Transformed with MDR1 and CDR1 MDR1/CDR1 P-Glycoproten Pumps Drugs and Toxins out of Cell MDR1/CDR1 Gene Product is ATP-Binding Cassette (ABC) Protein
Capisterones A (1) and B (2) Reverse Fluconazole-Resistance Xing-Cong et al. (2005) J. Nat. Prod., 69: 542-6
Algicidal Polyunsaturated Fatty Acids (PUFAs) from Ulva fasciatus Hexadeca-4,7,10,13-Tetraenoic Acid (HDTA) Octadeca-6,9,12,15-Tetraenoic Acid (ODTA) a-Linolenic Acid
Bioactive Compounds from Phaeophyta: Phloroglucinols from Ecklonia cava 8,8’-Bieckol 8,4”-Dieckol
Phloroglucinol Tannins (“Phlorotannins”) Phloroglucinol
Phlorotannins from Ecklonia cava Inhibit HIV Reverse-Transcriptase (RT) and Protease IC50(mM) RT Protease Eckol >100 >100 8,8’-Bieckol 0.51 81.5 8,4”-Dieckol 5.31 36.9 Phlorofucofureckol A >100 >100 Nevirapine 0.28 Not Tested Acetyl Pepstatin Not Tested 0.34 Taken from Ahn et al. (2004) Biol. Pharm. Bull., 27: 544-7
Bioactive Compounds from Phaeophyta: Diterpenes from Dictyota R (6R)-6-Hydroxydichotoma-3,14-Diene-1,17-Dial (Da-1) -H (6R)-6-Acetoxydichotoma-3,14-Diene-1,17-Dial (AcDa-1) -Ac (from D. meunstralis)
Da-1 and AcDa-1 Inhibit HIV-1 Replication by Inhibition of Reverse Transcriptase
Bioactive Compounds from Rhodophyta: Antiviral Activity of Carrageenan k-carrageenan n i-carrageenan n l-carrageenan n
Carrageenan Strongly Human Papilloma Virus (HPV) Psuedovirus (PsV)
Carrageenan Resembles Sulfated Glycosaminoglycans Heparan Sulfate
HPV Attaches to Host Cells by Binding Heparan Sulfate Bound to Cell Membrane
Carrageenan is Found ALREADY in Number of Contraceptives Buck et al. (2006)
Eukaryotic Microalgae Dinoflagellata Bacillariophyta (“Diatoms”) Raphidophyta
HAB Toxins Typically Associated with Human Health Effects “Amnesic Shellfish Poisoning” (ASP) “Paralytic Shellfish Poisoning” (PSP) “Neurotoxic Shellfish Poisoning” (NSP)“Ciguatera Fish Poisoning” (CFP) “Diarrhetic Shellfish Poisoning” (DSP)
“Amnesic Shellfish Poisoning” (ASP) Domoic Acid Pseudonitzschia spp.
Kainate Receptor is “Non-NMDA” Glutamate Receptor Ca2+ Glu 1. Free-Radicals (e.g. Nitric Oxide, Reactive Oxygen Species) 2. Damage to Membranes (e.g. Collapse of Mitochondria) 3. Loss of ATP 4. Apoptosis/Necrosis 5. Excitatory Neurotransmitters
“Paralytic Shellfish Poisoning” (PSP) R4: R1R2R3 H H H STX GTX5 H H OSO3- GTX2 C1 H OSO3- H GTX3 C2 OH H H NeoSTX GTX6 OH H OSO3- GTX1 C3 OH OSO3- H GTX4 C4 Saxitoxin (STX), Gonyautoxins (GTX) and Other “PSP Toxins” e.g. Alexandrium tamarense
= STX or TTX STX Binds Voltage-Gated Sodium Channels at the Same Site as TTX
Minor Modification of Sodium Channel Leads to Resistance to STX in Shellfish
Reduced Toxicity Leads to Increased Accumulation of STX in Shellfish Higher Mortality for STX-Exposed Clams (black) vs. Unexposed (white) Higher Accumulation in Resistant (black) vs. Sensitive (white) Clams
“Florida Red Tide” Karenia brevis
Brevetoxins (PbTx): The Florida Red Tide Toxin Brevetoxin A (PbTx-1) Brevetoxin B (PbTx-2)