100 likes | 508 Views
REGRES SION DIAGNOSTI CS. Problems. Influentials and outliers heteros c edasticit y auto c or relation. Regrese a její problémy. Mul t ic olinearit y – relationship of independent variables. RE S IDUA LS. Re s idua ls - review. Unstandardized re s idua ls H = hat matrix
E N D
Problems • Influentials and outliers • heteroscedasticity • autocorrelation
Regrese a její problémy • Multicolinearity – relationship of independent variables
Residuals - review • Unstandardized residuals H = hat matrix • Predicted residuals
Rezidua - review • Standardized residuals • Jackknife residuals
Influentials • If omitted from computation big change in regression coeffs can be found. • Goal: to find and exclude
Influentials -diagnosis • DFBETA(-i)=b-b(-i) Rule of thumb: Problém if NDFBETA>2/√n Note : DFFIT and NDFFIT problem if NDFFIT>2/√(n/p)
Heteroscedasticity • Assumption for regression: variance of error is the same for all values of indep. variable • Checking: Charts for residuals vs. ind. vars • Tests - Glejser, Goldfeld-Quandt • Solution: weighted LS
Glejser’stest • Model for residuals on ind. vars :