150 likes | 320 Views
Logistic regression , survival analysis , model II regres sion. Logist ic regres sion. Response ( dependent ) variable is either yes / no ( alive/ dead , flowering/sterile )
E N D
Logistic regression • Response (dependent) variable is either • yes/no (alive/ dead, flowering/sterile) • Number of positive cases out of total (seed germination, number of flowering individuals out of total no of individuals) – assuming binomial distribution • Regression model predicts probability, i.e.value between 0 and 1
Logistic regression 2 • Logit transformation: log( p / (1-p) )= log (odds ratio) • Can not be applied directly to 0/1, applied on predicted probabilities: p in(0, 1) • Special case of Generalized linear models (GLM)
Logistická regrese a Statistica • Example – survival of winter depending on flowering and rhizome size • Advanced Linear /Nonlinear Models • Generalized ... Models • Logit model • Or non-linear estimation...
Possible application • Example – how is the probability of survival over the winter affected by flowering in previous summer, storage of sugars, and length of the winter? • Surmalog.xls, list ReprEff
Survival analysis • Survival analysis, mainly in medicine • Useful for data (usually about time) with censoring • Most often right censoring: I have finished the experiment, but some individuals are still alive (or did not germinate yet etc.] • Left censoring • For data without censoring are probably simpler methods available - mostlygeneralized linear models)
Survival curve • Kaplan-Meier method:
Míra rizika • Hazard rate, l: pravděpodobnost, že jedinec přežije časový úsek t, pokud se jej již dožil • Kumulativní funkce míry rizika L(t): ve vztahu ke křivce přežívání platí:L(t) = - log S(t) • Využití lu složitějších modelů analýzy přežívání (Coxův model relativního rizika, Cox proportional hazard rate):l(t) = l0(t)*eb0+b1x1+b2x2+…
Use of survival analysis? • Comparison of survival curves among groups • Estimate “halftime” (of life, survival time, time to germination) with confidence interval • Testing effects of both quantitative and qualitative predictors
Survival analysis - exercises • Germination dynamics affected by chilling, fileSurmalog.xls, sheetGermination,methodComparing two samples • Effect of radio-collars on survival of antilops -obojků na úmrtnost antilop,fileSurmalog.xls, sheetRadioCollars,methodRegression / Proportional hazard (Cox) regression
Regression model typ II • In ordinary Least Squares, in dependence of Y on X, vertical differences are minimized (i.e. (Y-Ypredicted)2 • Similarly, if we study X ~ Y, (X-Xpredicted)2is minimized. • The angel among the two lines decreases with increasing (r) • Major axis (MA) regression – symmetric – what is perpendicular depends on units – various standardizations
MA regression: motivation • Zkoumáme vztah mezi délkou (L)a hmotností (M) jedinců určitého druhu • Pokud se tvar těla s růstem nemění (isometrický růst), lze vztah popsat takto:M = c*L3 a po logaritmování:log(M) = b0 + 3*log(L), kde b0 = log(c) • Při užití „normální“ regrese bude ale odhadnutý koeficient b1< 3
Alometricbiomass partitioning • Allometric biomass partitioning theory (APT): : Mleaves=b1*Mroots3/4 B.J. Enquist & K.J. Nikolas (2002): Global allocation rules for patterns of biomass partitioning in seed plants. Science295, 1517-1520.
MA regression: example • Vztah biomasy listů a stonků: Mleaves=b1*Mroots3/4 • After log transformation, slope should be 0.75 • Various herb species • RMA program : • http://www.bio.sdsu.edu/pub/andy/rma.html