1 / 69

Stratified turbulent flows in Ocean and Atmosphere : Processes, observations and CFD

Stratified turbulent flows in Ocean and Atmosphere : Processes, observations and CFD. Philippe Fraunié. Laboratoire de Sondages Electromagnétiques de l’Environnement Terrestre (Université de Toulon et du Var). Non-Homogeneous Turbulence Vilanova y La Geltru june 2008. Observations.

MikeCarlo
Download Presentation

Stratified turbulent flows in Ocean and Atmosphere : Processes, observations and CFD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stratified turbulent flows in Ocean and Atmosphere : Processes, observations and CFD Philippe Fraunié Laboratoire de Sondages Electromagnétiques de l’Environnement Terrestre (Université de Toulon et du Var) Non-Homogeneous Turbulence Vilanova y La Geltru june 2008

  2. Observations

  3. Basic processes

  4. KH instability Kelvin-Helmholtz instability : Richter (1969)

  5. Holmboe instability • Ri > ¼ • Su > 2 Sb • Possibility of Holmboe instability

  6. Holmboe instability

  7. DeSilva, Fernando, Hebert & Eaton, Earth Planetary Sci. Lett. , 1996

  8. Turbulence scales

  9. Measurements in Atmosphere • Profiles of temperature mesured by baloons : weakly and srongly stratified layers (Dalaudier et al., 1994)

  10. turbulence measurements from high resolution temperature profiles from balloon (MUTSI exp) Vertical resolution : 150 m (Résolution verticale: 12.8 m) MU Radar Balloon Thorpe Scale dissipation rate Turbulent Diff structure const (T) Brünt-Vaïsälä frequency (Gavrilov, Luce, Dalaudier, Crochet, Fukao, Annale Geophys. 2005)

  11. Atmosphere • ‘turbulence – waves –stability – shear’ radar reflectance and wind shear Across a front (Luce et al)

  12. Measurements in Oceans • Temperature profiles in Malta sea : Contribution of K.-H. instabilities to mixed layers (Woods, 1969) • Korotayev et Panteleyev (1977), Indian and Pacific oceans, Alford et Pinkel (2000) California

  13. Measurements in Ocean • Temperature profiles in Japan sea : Contribution of internal waves to mixed layers (Navrotsky, 1999)

  14. The Rhône river plume

  15. velocity 5 meters deep TSM SPOT image Secondary flows.

  16. The layering effect

  17. SAMPOS floating System(JL Devenon)(ADP + DL7 + GPS)

  18. CTD and velocity profiles(Arnoux et al, 2005)

  19. Settling velocity

  20. Laboratory Experiments : the layering effect • Generation of turbulence (grids) in a stratified flow at rest Interaction between turbulence and stratification

  21. Computational Fluid Dynamics • Focused on Kelvin-Helmholtz instability (Palmer et al., 1996) • Only few numerical experiments concerning internal waves (Koudella et Staquet, 1996 ; Bouruet-Aubertot et al., 2001)

  22. Navier-Stokes solver • Based on JETLES DNS Code (Versico, Orlandi) adapted to stratified flows : • cartésian coodinates • sreamwise non périodic bc (Ox) • transport equations for salinity and temperature) • LES • Smagorinsky subgrid model

  23. LES equations • Continuity equation : • Momentum equations :

  24. Transport of scalar fields • Temperature and Salinity : • State Equation :

  25. LES numerical code • Continuity equation : • Momentum equations :

  26. Turbulence closure • Smagorinsky model :

  27. Discretization • Time marching : three steps Runge-Kutta scheme,third order accurate • Spacial discretization : second order centered finite differences

  28. Algorithm

  29. Computational domain Taille du domaine: 2 < Lx < 4 m ; Ly = 0.1 m ; 0.1 < Lz < 0.2 m Taille de la barre : Maillage : dx = 3.9 mm ; dy = 3.1 mm ; dz = 1 mm

  30. si 0 si Boundary conditions En surface et au fond : A la frontière droite : A la frontière gauche : avec

  31. Homogeneous flow :Von Karman streets Champs d’iso-vitesses horizontales, d’iso-vitesses verticales et d’iso-vorticités d’axe (Oy)

  32. 3D structures low Reynlods number Surfaces d’iso-vorticité : - en rouge et bleu, les surfaces - en vert et noir, les surfaces

  33. 3D structures larger Reynolds number Surfaces d’iso-vorticité : - en rouge et bleu, les surfaces - en vert et noir, les surfaces

  34. 2D du computational domain

  35. Turbulence collapse  (1) Champs d’iso-vorticité d’axe (Oy)

  36. Turbulence collapse  (2) Transformée de Fourier de l’évolution temporelle des composantes de vitesse dans le sillage proche : - Diminution du nombre de Strouhal avec l’augmentation de la stratification

  37. Turbulence collapse (3) :  physical process  • Temporal evolution of the near wake width for Richardson numbers less than 1/4 : • the wake grows following a t1/3 law as for homogeneous flow • coolapse occurs when the wake width is maximum • the wake widh decreases up to an constant value

  38. Physical collapse (4) oooRi0 = 0.03 ;oooRi0 = 0.039 D ’après Lin et al. (1992) L’épaisseur du sillage proche atteint une valeur maximale pour NBVt  2  Ri0 < 1/9

  39. Physical collapse (5) • NBVt (maximum wake width) depends on Ri0 (Xu et al., 1995) : • Ri0 < 1/9 : NBVt varies in the range 1.5 - 2.5 • 1/9 < Ri0 < 1/4 : NBVt varies between 3 and 5 • Ri0 > 1/4 : the wake width is constant

  40. Physical collapse (6) : • La taille de la zone perturbée dans le cas n’évolue pas contrairement au cas

  41. Gravity internal wave :weak initial stratification (1) • Iso-density fields for différent Richardson numbers : • Ondulation occurs at the starting point

  42. Gravity internal wave :weak initial stratification (2) • Profiles of local Richardson number : • Waves occur for Ri > 1 : stratification dominates turbulence

  43. Gravity internal wave :strong initial stratification (1)

  44. Gravity internal wave :strong initial stratification (2) • Iso-density and d’iso-vorticity - transverse axis (Oy) • ondulatory motion imposed by internal waves • Remember Lee waves (Atkinson) :  

  45. Mixing Processes in the near wake : weak initial stratification (1) • Iso-vorticity - transverse axis (Oy) in the near wake • Shear instability overturning

  46. Mixing Processes in the near wake : weak initial stratification (2) • Overturning: time evolution of two density surfaces • Roll up

  47. Mixing Processes in the near wake : weak initial stratification (3) Local convective instability Unstable situation Overturning

  48. Mixing Processes in the near wake : strong initial stratification (1) • Time evolution of two density surfaces • Breaking internal waves

  49. Mixing Processes in the far wake : weak initial stratification Sillage lointain • Iso-density field in the far wake • Mushroom type structures collapse due to stratification

More Related