230 likes | 409 Views
Previously . Microbial survival in environmental media Water, land, air Small scale sanitation, composting latrines, etc Conventional wastewater treatment in developed countries Screening/settling/”activated sludge”/disinfection Overview of processes, chemical and physical. Outline.
E N D
Previously • Microbial survival in environmental media • Water, land, air • Small scale sanitation, composting latrines, etc • Conventional wastewater treatment in developed countries • Screening/settling/”activated sludge”/disinfection • Overview of processes, chemical and physical
Outline • But what about developing countries? • In many cases, no wastewater treatment • “Natural attenuation” • What are some practical options for wastewater treatment in poor countries? • (& see handouts) • More about microbes and how they are reduced in wastewater
Alternative Biological Treatment of Wastewater:Alternatives for Small and Rural Communities • Letting nature do its thing • Lagoons, Ponds and Ditches • aerobic, anaerobic and facultative; for smaller communities and farms • enteric microbes are reduced by ~90-99% per pond • multiple ponds in series increases microbe reductions • Constructed Wetlands • aerobic systems containing biologically active, oxidizing microbes and emergent aquatic plants • Lagoons and constructed wetlands are practical and economical sewage treatment alternatives when land is available at reasonable cost (Phnom Penh)
Stabilization Ponds or Lagoons • Aerobic and Facultative Ponds: • Biologically Rx by complementary activity of algae and bacteria. • Used for raw sewage as well as primary‑ or secondary‑Rx’d. effluent. • Bacteria and other heterotrophs convert organic matter to carbon dioxide, inorganic nutrients, water and microbial biomass. • Algae use CO2 and inorganic nutrients, primarily N and P, in photosynthesis to produce oxygen and algal biomass. • Many different pond designs have been used to treat sewage • Used here in the US in decentralized plants and CAFOs
Stabilization Ponds or Lagoons, cont • Facultative ponds: upper, aerobic zone and a lower anaerobic zone. • Aerobic heterotrophics and algae proliferate in the upper zone. • Biomass from upper zone settles into the anaerobic, bottom zone. • Bottom solids digested by anaerobic bacteria • Also used with aquaculture systems
Enteric Microbe/Pathogen Reductions in Stabilization Ponds • BOD and enteric microbe/pathogen reductions of 90%, esp. in warm, sunny climates. • Even greater enteric microbe /pathogen reductions by using two or more ponds in series • Better BOD and enteric microbe/pathogen reductions if detention (residence) times are sufficiently long (several weeks to months) • Enteric microbes reduced by 90% in single ponds and by multiples of 90% for ponds in series. • Microbe removal may be quite variable depending upon pond design, operating conditions and climate. • Reduction efficiency lower in colder weather and shorter retention times
Constructed Wetlands and Enteric Microbe Reductions • Surface flow (SF) wetlands reduce enteric microbes by ~90% • Subsurface flow (SSF) wetlands reduce enteric microbes by ~99% • Greater reduction in SSF may be due to greater biological activity in wetland bed media (porous gravel) and longer retention times • Multiple wetlands in series incrementally increase microbial reductions, with 90-99% reduction per wetland cell.
Septic Tank-Soil Absorption Systems for On-Site Sewage Rx • Used where there are no sewers and community sewage treatment facilities: ex.: rural homes • Septic tank: solids settle and are digested • Septic tank effluent (STE) is similar to primary sewage effluent • Distribute STE to soil via a sub-surface, porous pipe in a trench • Absorption System: Distribution lines and drainfield • Septic tank effluent flows through perforated pipes located 2-3 feet below the land surface in a trenches filled with gravel, preferably in the unsaturated (vadose) zone. • Effluent discharges from perforated pipes into trench gravel and then into unsaturated soil, where it is biologically treated aerobically. • Enteric microbes are removed and retained by the soil
More on sanitation technologies: • www.wateraid.co.uk • Handouts • For more on small-scale sanitation, check out The Humanure Handbook
Indicator Microbe Levels in Raw and Treated Municipal Sewage: Sewage Treatment Efficacy 100000000 100000000 10000000 10000000 1000000 1000000 100000 100000 10000 10000 1000 1000 Number/100 ml 100 100 10 10 1 1 F. col. E. coli Ent. C. p. F+ phg. Raw Treated (geom. mean values of 24 biweekly samples)
REMOVAL OF ENTERIC BACTERIA BY SEWAGE TREATMENT PROCESSES ORGANISM PROCESS % REMOVAL Fecal indicators Primary sed. 0‑60% E. coli Primary sed. 32-50% Fecal indicators Trickling filt. 20‑80% Fecal indicators Activated sludge 40‑95% Fecal indicators Stab. ponds, 1 mo. >99.9999% @ high temp. Salmonellae Primary sed. 79%, 6‑7 hrs. Salmonellae " 73%, 6‑7 hrs.
Entamoeba histolytica Reduction by Sewage Treatment ORGANISM PROCESS % REMOVAL E. histolytica Primary Sed. 50% E. histolytica Primary Sed., 2 hr. 64% E. histolytica Primary sed., 1 hr. 27% E. histolytica Primary sed. + Trickl. Filt. 25% E. histolytica Primary sed. + Act. Sludge 83% E. histolytica Oxidation ditch + Sedimentation 91% E. histolytica Stabilization ponds + sedimentation 100% E. histolytica " 100%, 94%, 87% E. histolytica " 100% E. histolytica Aerated lagoon (no settling) 84%
Disinfection of Wastewater • Intended to reduce microbes in 1o or 2o treated effluent • Typically chlorination • Alternatives: UV radiation, ozone and chlorine dioxide • Good enteric bacterial reductions: typically, 99.99+% • Meet fecal coliform limits for effluent dicharge • Often 200-1,000 per 100 ml geometric mean as permitted discharge limit • Less effective for viruses and parasites: typically, 90-99% reduction • Toxicity of chlorine and its by‑products to aquatic life now limits wastewater chlorination; may have to: • Dechlorinate • Use an alternative, less toxic chemical disinfectant or • Use an alternative treatment process to reduce enteric microbes
When Wastewater Disinfection is Recommended or Required • Discharge to surface waters: • near water supply intakes • used for primary contact recreation • used for shellfish harvesting • used for irrigation of crops and greenspace • other direct and indirect reuse and reclamation purposes • Discharge to ground waters waters: • used as a water supply source • used for irrigation of crops and greenspace • other direct and indirect reuse and reclamation purposes
Wastewater Reuse: reading for Thursday • Wastewater is sometimes reused for beneficial, non-potable purposes in arid and other water-short regions. • Often uses advanced or additional treatment processes, sometimes referred to as “reclamation” • Biological treatment in “polishing” ponds and constructed wetlands • Physical-chemical treatment processes as used for drinking water: • Coagulation-flocculation and sedimentation • Filtration: granular medium filters; membrane filters • Granular Activated Carbon adsorption • Disinfection