80 likes | 131 Views
Online Bigdata Hadoop Training in USA also Hyderabad, RStrainings is providing classroom & Online Training on Hadoop Bigdata. Our Trainers are real time work experience with 12 years. We allocate Trainings on Hadoop globally UK, India, Aus, Canada, Saudi, Singapore
E N D
www.rstrainings.com Contactus:-9052699906 HADOOPONLINETRAININGCOURSECONTENT: Duringthiscourse,youwilllearn: IntroductiontoBigDataandAnalytics IntroductiontoHadoop Hadoopecosystem-Concepts HadoopMap-reduceconceptsandfeatures Developingthemap-reduceApplications Pigconcepts Hiveconcepts Sqoopconcepts FlumeConcepts Oozieworkflowconcepts ImpalaConcepts HueConcepts HBASEConcepts ZooKeeperConcepts RealLifeUseCases ReportingTool
Tableau 1.Virtualbox/VMWare Basics Installations Backups Snapshots 2.Linux Basics Installations Commands 3.Hadoop WhyHadoop? Scaling DistributedFramework Hadoopv/sRDBMS Briefhistoryofhadoop 4.Setuphadoop Pseudomode Clustermode Ipv6 Ssh Installationofjava,hadoop Configurationsofhadoop HadoopProcesses(NN,SNN,JT,DN,TT) Temporarydirectory UI
Commonerrorswhenrunninghadoopcluster,solutions 5.HDFS-HadoopdistributedFileSystem HDFSDesignandArchitecture HDFSConcepts InteractingHDFSusingcommandline InteractingHDFSusingJavaAPIs Dataflow Blocks Replica 6.HadoopProcesses Namenode Secondarynamenode Jobtracker Tasktracker Datanode 7.MapReduce DevelopingMapReduceApplication PhasesinMapReduceFramework MapReduceInputandOutputFormats AdvancedConcepts SampleApplications Combiner 8.JoiningdatasetsinMapreducejobs Map-sidejoin Reduce-Sidejoin
9.Mapreduce–customization CustomInputformatclass HashPartitioner CustomPartitioner Sortingtechniques CustomOutputformatclass 10.HadoopProgrammingLanguages:- I.HIVE Introduction InstallationandConfiguration InteractingHDFSusingHIVE MapReduceProgramsthroughHIVE HIVECommands Loading,Filtering,Grouping…. Datatypes,Operators….. Joins,Groups…. SampleprogramsinHIVE II.PIG Basics InstallationandConfigurations Commands…. OVERVIEWHADOOPDEVELOPER 11.Introduction 12.TheMotivationforHadoop Problemswithtraditionallarge-scalesystems Requirementsforanewapproach
13.Hadoop:BasicConcepts AnOverviewofHadoop TheHadoopDistributedFileSystem Hands-OnExercise HowMapReduceWorks Hands-OnExercise AnatomyofaHadoopCluster OtherHadoopEcosystemComponents 14.WritingaMapReduceProgram TheMapReduceFlow ExaminingaSampleMapReduceProgram BasicMapReduceAPIConcepts TheDriverCode TheMapper TheReducer Hadoop’sStreamingAPI UsingEclipseforRapidDevelopment Hands-onexercise TheNewMapReduceAPI 15.CommonMapReduceAlgorithms SortingandSearching Indexing MachineLearningWithMahout TermFrequency–InverseDocumentFrequency WordCo-Occurrence Hands-OnExercise.
16.PIGConcepts.. DataloadinginPIG. DataExtractioninPIG. DataTransformationinPIG. HandsonexerciseonPIG. 17.HiveConcepts. HiveQueryLanguage. AlterandDeleteinHive. PartitioninHive. Indexing. JoinsinHive.Unionsinhive. Industryspecificconfigurationofhiveparameters. Authentication&Authorization. StatisticswithHive. ArchivinginHive. Hands-onexercise 18.WorkingwithSqoop Introduction. ImportData. ExportData. SqoopSyntaxs. Databasesconnection. Hands-onexercise 19.WorkingwithFlume Introduction. ConfigurationandSetup.
FlumeSinkwithexample. Channel. FlumeSourcewithexample. Complexflumearchitecture. 20.OOZIEConcepts 21.IMPALAConcepts 22.HUEConcepts 23.HBASEConcepts 24.ZooKeeperconcepts ReportingTool.. Tableau Thiscourseisdesignedforthebeginnertointermediate-levelTableauuser.Itisforanyonewhoworkswithdata–regardlessoftechnicaloranalyticalbackground.ThiscourseisdesignedtohelpyouunderstandtheimportantconceptsandtechniquesusedinTableautomovefromsimpletocomplexvisualizationsandlearnhowtocombinethemininteractivedashboards. CourseTopics Overview Whatisvisualanalysis? strengths/weaknessofthevisualsystem. LayingtheGroundworkforVisualAnalysis AnalyticalProcess Preparingforanalysis Getting,CleaningandClassifyingYourData Cleaning,formattingandreshaping. Usingadditionaldatatosupportyouranalysis. Dataclassification VisualMappingTechniques VisualVariables:BasicUnitsofDataVisualization WorkingwithColor
Marksinaction:Commoncharttypes SolvingReal-WorldProblemswithVisualAnalysis GettingaFeelfortheData-ExploratoryAnalysis. Makingcomparisons Lookingat(co-)Relationships. Checkingprogress. SpatialRelationships. Try,tryagain. CommunicatingYourFindings Fine-tuningformoreeffectivevisualization Storytellingandguidedanalytics Dashboards OurOnlineServicesprovidingworldwidelikeAsia,Europe,America,Africa,Sweden,NorthKorea, SouthKorea,Canada,Netherland,Itely,Russia,Israel,NewZealand,Norway,Singapore,Malasia,etc