790 likes | 1.65k Views
CHEM 160 General Chemistry II Lecture Presentation Electrochemistry. December 1, 2004 Chapter 20. Electrochemistry. Electrochemistry deals with interconversion between chemical and electrical energy. Electrochemistry. Electrochemistry
E N D
CHEM 160 General Chemistry IILecture PresentationElectrochemistry December 1, 2004 Chapter 20
Electrochemistry • Electrochemistry • deals with interconversion between chemical and electrical energy
Electrochemistry • Electrochemistry • deals with the interconversion between chemical and electrical energy • involves redox reactions
Electrochemistry • Electrochemistry • deals with interconversion between chemical and electrical energy • involves redox reactions • electron transfer reactions • Oh No! They’re back!
Redox reactions (quick review) • Oxidation • Reduction • Reducing agent • Oxidizing agent
Redox reactions (quick review) • Oxidation • loss of electrons • Reduction • Reducing agent • Oxidizing agent
Redox reactions (quick review) • Oxidation • loss of electrons • Reduction • gain of electrons • Reducing agent • Oxidizing agent
Redox reactions (quick review) • Oxidation • loss of electrons • Reduction • gain of electrons • Reducing agent • donates the electrons and is oxidized • Oxidizing agent
Redox reactions (quick review) • Oxidation • loss of electrons • Reduction • gain of electrons • Reducing agent • donates the electrons and is oxidized • Oxidizing agent • accepts electrons and is reduced
Redox Reactions • Direct redox reaction
Redox Reactions • Direct redox reaction • Oxidizing and reducing agents are mixed together
Direct Redox Reaction Zn rod CuSO4(aq) (Cu2+)
Direct Redox Reaction Zn rod CuSO4(aq) (Cu2+) Deposit of Cu metal forms
Redox Reactions • Direct redox reaction • Oxidizing and reducing agents are mixed together • Indirect redox reaction • Oxidizing and reducing agents are separated but connected electrically • Example • Zn and Cu2+ can be reacted indirectly • Basis for electrochemistry • Electrochemical cell
Electrochemical Cells • Voltaic Cell • cell in which a spontaneous redox reaction generates electricity • chemical energy electrical energy
Electrochemical Cells Voltaic Cell
Electrochemical Cells • Electrolytic Cell • electrochemical cell in which an electric current drives a nonspontaneous redox reaction • electrical energy chemical energy
Cell Potential • Cell Potential (electromotive force), Ecell (V) • electrical potential difference between the two electrodes or half-cells • Depends on specific half-reactions, concentrations, and temperature • Under standard state conditions ([solutes] = 1 M, Psolutes = 1 atm), emf = standard cell potential, Ecell • 1 V = 1 J/C • driving force of the redox reaction
Cell Potential low electrical potential high electrical potential
Cell Potential Ecell = Ecathode - Eanode = Eredn - Eox E°cell = E°cathode - E°anode = E°redn - E°ox (Ecathode and Eanode are reduction potentials by definition.)
Cell Potential • E°cell = E°cathode - E°anode = E°redn - E°ox • Ecell can be measured • Absolute Ecathode and Eanode values cannot • Reference electrode • has arbitrarily assigned E • used to measure relative Ecathode and Eanode for half-cell reactions • Standard hydrogen electrode (S.H.E.) • conventional reference electrode
Standard Hydrogen Electrode • E = 0 V (by definition; arbitrarily selected) • 2H+ + 2e- H2
Example 1 A voltaic cell is made by connecting a standard Cu/Cu2+ electrode to a S.H.E. The cell potential is 0.34 V. The Cu electrode is the cathode. What is the standard reduction potential of the Cu/Cu2+ electrode?
Example 2 A voltaic cell is made by connecting a standard Zn/Zn2+ electrode to a S.H.E. The cell potential is 0.76 V. The Zn electrode is the anode of the cell. What is the standard reduction potential of the Zn/Zn2+ electrode?
Standard Electrode Potentials • Standard Reduction Potentials, E° • E°cell measured relative to S.H.E. (0 V) • electrode of interest = cathode • If E° < 0 V: • Oxidizing agent is harder to reduce than H+ • If E° > 0 V: • Oxidizing agent is easier to reduce than H+
Reduction Half-Reaction E(V) F2(g) + 2e- 2F-(aq) 2.87 Au3+(aq) + 3e- Au(s) 1.50 Cl2(g) + 2 e- 2Cl-(aq) 1.36 Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33 O2(g) + 4H+ + 4e- 2H2O(l) 1.23 Ag+(aq) + e- Ag(s) 0.80 Fe3+(aq) + e- Fe2+(aq) 0.77 Cu2+(aq) + 2e- Cu(s) 0.34 Sn4+(aq) + 2e- Sn2+(aq) 0.15 2H+(aq) + 2e- H2(g) 0.00 Sn2+(aq) + 2e- Sn(s) -0.14 Ni2+(aq) + 2e- Ni(s) -0.23 Fe2+(aq) + 2e- Fe(s) -0.44 Zn2+(aq) + 2e- Zn(s) -0.76 Al3+(aq) + 3e- Al(s) -1.66 Mg2+(aq) + 2e- Mg(s) -2.37 Li+(aq) + e- Li(s) -3.04 Standard Reduction Potentials
Uses of Standard Reduction Potentials • Compare strengths of reducing/oxidizing agents. • the more - E°, stronger the red. agent • the more + E°, stronger the ox. agent
Reduction Half-Reaction E(V) F2(g) + 2e- 2F-(aq) 2.87 Au3+(aq) + 3e- Au(s) 1.50 Cl2(g) + 2 e- 2Cl-(aq) 1.36 Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33 O2(g) + 4H+ + 4e- 2H2O(l) 1.23 Ag+(aq) + e- Ag(s) 0.80 Fe3+(aq) + e- Fe2+(aq) 0.77 Cu2+(aq) + 2e- Cu(s) 0.34 Sn4+(aq) + 2e- Sn2+(aq) 0.15 2H+(aq) + 2e- H2(g) 0.00 Sn2+(aq) + 2e- Sn(s) -0.14 Ni2+(aq) + 2e- Ni(s) -0.23 Fe2+(aq) + 2e- Fe(s) -0.44 Zn2+(aq) + 2e- Zn(s) -0.76 Al3+(aq) + 3e- Al(s) -1.66 Mg2+(aq) + 2e- Mg(s) -2.37 Li+(aq) + e- Li(s) -3.04 Standard Reduction Potentials Ox. agent strength increases Red. agent strength increases
Uses of Standard Reduction Potentials • Determine if oxidizing and reducing agent react spontaneously • diagonal rule ox. agent spontaneous red. agent
Uses of Standard Reduction Potentials • Determine if oxidizing and reducing agent react spontaneously more + Spontaneous rxn if E°cathode > E°anode Cathode (reduction) E°redn (cathode) E°redn (V) Anode (oxidation) E°redn (anode) more -
Reduction Half-Reaction E(V) F2(g) + 2e- 2F-(aq) 2.87 Au3+(aq) + 3e- Au(s) 1.50 Cl2(g) + 2 e- 2Cl-(aq) 1.36 Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33 O2(g) + 4H+ + 4e- 2H2O(l) 1.23 Ag+(aq) + e- Ag(s) 0.80 Fe3+(aq) + e- Fe2+(aq) 0.77 Cu2+(aq) + 2e- Cu(s) 0.34 Sn4+(aq) + 2e- Sn2+(aq) 0.15 2H+(aq) + 2e- H2(g) 0.00 Sn2+(aq) + 2e- Sn(s) -0.14 Ni2+(aq) + 2e- Ni(s) -0.23 Fe2+(aq) + 2e- Fe(s) -0.44 Zn2+(aq) + 2e- Zn(s) -0.76 Al3+(aq) + 3e- Al(s) -1.66 Mg2+(aq) + 2e- Mg(s) -2.37 Li+(aq) + e- Li(s) -3.04 Standard Reduction Potentials
Uses of Standard Reduction Potentials • Calculate E°cell • E°cell = E°cathode - E°anode • Greater E°cell, greater the driving force • E°cell > 0 : spontaneous redox reactions • E°cell < 0 : nonspontaeous redox reactions
Example 3 A voltaic cell consists of a Ag electrode in 1.0 M AgNO3 and a Cu electrode in 1 M Cu(NO3)2. Calculate E°cell for the spontaneous cell reaction at 25°C.
Reduction Half-Reaction E(V) F2(g) + 2e- 2F-(aq) 2.87 Au3+(aq) + 3e- Au(s) 1.50 Cl2(g) + 2 e- 2Cl-(aq) 1.36 Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33 O2(g) + 4H+ + 4e- 2H2O(l) 1.23 Ag+(aq) + e- Ag(s) 0.80 Fe3+(aq) + e- Fe2+(aq) 0.77 Cu2+(aq) + 2e- Cu(s) 0.34 Sn4+(aq) + 2e- Sn2+(aq) 0.15 2H+(aq) + 2e- H2(g) 0.00 Sn2+(aq) + 2e- Sn(s) -0.14 Ni2+(aq) + 2e- Ni(s) -0.23 Fe2+(aq) + 2e- Fe(s) -0.44 Zn2+(aq) + 2e- Zn(s) -0.76 Al3+(aq) + 3e- Al(s) -1.66 Mg2+(aq) + 2e- Mg(s) -2.37 Li+(aq) + e- Li(s) -3.04 Standard Reduction Potentials
Example 4 A voltaic cell consists of a Ni electrode in 1.0 M Ni(NO3)2 and an Fe electrode in 1 M Fe(NO3)2. Calculate E°cell for the spontaneous cell reaction at 25°C.
Reduction Half-Reaction E(V) F2(g) + 2e- 2F-(aq) 2.87 Au3+(aq) + 3e- Au(s) 1.50 Cl2(g) + 2 e- 2Cl-(aq) 1.36 Cr2O72-(aq) + 14H+(aq) + 6e- 2Cr3+(aq) + 7H2O 1.33 O2(g) + 4H+ + 4e- 2H2O(l) 1.23 Ag+(aq) + e- Ag(s) 0.80 Fe3+(aq) + e- Fe2+(aq) 0.77 Cu2+(aq) + 2e- Cu(s) 0.34 Sn4+(aq) + 2e- Sn2+(aq) 0.15 2H+(aq) + 2e- H2(g) 0.00 Sn2+(aq) + 2e- Sn(s) -0.14 Ni2+(aq) + 2e- Ni(s) -0.23 Fe2+(aq) + 2e- Fe(s) -0.44 Zn2+(aq) + 2e- Zn(s) -0.76 Al3+(aq) + 3e- Al(s) -1.66 Mg2+(aq) + 2e- Mg(s) -2.37 Li+(aq) + e- Li(s) -3.04 Standard Reduction Potentials
Cell Potential • Is there a relationship between Ecell and DG for a redox reaction?
Cell Potential • Relationship between Ecell and DG: • DG = -nFEcell • F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn.
Cell Potential • Relationship between Ecell and DG: • DG = -nFEcell • F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn. • 1 J = CV • G < 0, Ecell > 0 = spontaneous
Equilibrium Constants from Ecell • Relationship between Ecell and DG: • DG = -nFEcell • F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn • 1 J = CV • G < 0, Ecell > 0 = spontaneous • Under standard state conditions: • DG° = -nFE°cell
Equilibrium Constants from Ecell • Relationship between Ecell and DG: • DG = -nFEcell • F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn • 1 J = CV • G < 0, Ecell > 0 = spontaneous • Under standard state conditions: • DG° = -nFE°cell
Equilibrium Constants from Ecell • Relationship between Ecell and DG: • DG = -nFEcell • F = Faraday constant = 96500 C/mol e-’s, n = # e-’s transferred redox rxn • 1 J = CV • G < 0, Ecell > 0 = spontaneous • Under standard state conditions: • DG° = -nFE°cell and • DG° = -RTlnK so • -nFE°cell = -RTlnK
Calorimetric Data DH° DS° Electrochemical Data Composition Data DG° E°cell Equilibrium constants K
Example 5 Calculate E°cell, DG°, and K for the voltaic cell that uses the reaction between Ag and Cl2 under standard state conditions at 25°C.
The Nernst Equation • DG depends on concentrations • DG = DG° + RTlnQ and • DG = -nFEcell and DG° = -nFE°cell thus • -nFEcell = -nFE°cell + RTlnQ or • Ecell = E°cell - (RT/nF)lnQ (Nernst eqn.)