1 / 27

Point set alignment

Point set alignment. Closed-form solution of absolute orientation using unit quaternions Berthold K. P. Horn Department of Electrical Engineering, University of Hawaii at Manoa. Presented by Ashley Fernandes. Abstract. Finding relationship between coordinate systems (absolute orientation)

Sophia
Download Presentation

Point set alignment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Point set alignment Closed-form solution of absolute orientation using unit quaternions Berthold K. P. Horn Department of Electrical Engineering, University of Hawaii at Manoa Presented by Ashley Fernandes

  2. Abstract • Finding relationship between coordinate systems (absolute orientation) • Closed-form • Use of quaternions for rotation • Use of centroid for translation • Use of root-mean-square deviations for scale

  3. Disadvantages of previous methods • Cannot handle more than three points • Do not use information from all three points • Iterative instead of least squares

  4. Introduction - Transformation Transformation between two Cartesian coordinate systems Translation Rotation Scaling

  5. Introduction - Method • Minimize error • Closed-form solution • Use of quaternions • Symmetry of solution

  6. Coordinate systems

  7. Selective discarding constraints X axis Y axis Z axis l Maps points from left hand to right hand coordinate system Rotation

  8. Finding the translation Measured coordinates in left and right hand systems Form of translation Scale factor Translational offset Rotated vector from left coordinate system Residual error To be minimized

  9. Centroids of sets of measurements Centroids New coordinates Error term where Sum of squares of errors

  10. Centroids of sets of measurements Translation, when r’o = 0 Error term, when r’o = 0 Total error term to be minimized

  11. Finding the scale Total error term, since To minimize w.r.t. scale s, first term should be zero, or

  12. Symmetry in scale Suppose we tried to find , or so we hope. But, or Instead, we use Total error becomes To minimize w.r.t. scale s, first term should be zero, or Scale

  13. Why unit quaternions • Easier to enforce unit magnitude constraint on quaternion than orthogonal constraint on matrix • Closely allied to geometrically intuitive concept of rotation by an angle about an axis

  14. Quaternions Representation If Multiplication

  15. Quaternions Multiplication expressed as product of orthogonal matrix4x4 and vector4

  16. Quaternions Dot product Square of magnitude Conjugate Product of quaternion and its conjugate Inverse

  17. Unit quaternions and rotation if We use the composite product which is purely imaginary. Note that this is similar to Also, note that

  18. Relationship to other notations If angle is Θ and axis is unit vector

  19. Composition of rotations First rotation Second rotation Since Combined rotation

  20. Finding the best rotation We must find the quaternion that maximizes Let and

  21. Finding the best rotation What we have to maximize

  22. Finding the best rotation where and Introducing the matrix3x3 that contains all the information required to solve the least-squares problem for rotation. where and so on. Then,

  23. Eigenvector maximizes matrix product Unit quaternion that maximizes is eigenvector corresponding to most positive eigenvalue of N. Eigenvalues are solutions of quartic in that we obtain from After selecting the largest positive eigenvalue we find the eigenvector by solving

  24. Nature of the closed-form solution • Find centroids rl and rr of the two sets of measurements • Subtract them from all measurements • For each pair of coordinates, compute x’lx’r, x’ly’r, … z’lz’r of the components of the two vectors. • These are added up to obtain Sxx, Sxy, …Szz.

  25. Nature of the closed-form solution • Compute the 10 independent elements of the 4x4 symmetric matrix N • From these elements, calculate the coefficients of the quartic that must be solved to get the eigenvalues of N • Pick the most positive root and use it to solve the four linear homogeneous equations to get the eigenvector. The quaternion representing the rotation is a unit vector in the same direction.

  26. Nature of the closed-form solution • Compute the scale from the symmetrical form formula, i.e. the ratio of the root-mean-square deviations of the measurements from their centroids. • Compute the translation as the difference between the centroid of the right measurements and the scaled and rotated centroid of the left measurement.

  27. Thank you. The end.

More Related