420 likes | 434 Views
Learn about robot mapping and SLAM (Simultaneous Localization and Mapping), which involves modeling the environment and estimating the robot's location and building a map simultaneously. Explore the relevance and applications of SLAM in various industries such as home automation, surveillance, underwater exploration, and space navigation.
E N D
RobotMapping IntroductiontoRobotMapping Courtesy of CyrillStachniss
WhatisRobotMapping? • Robot–adevice,thatmovesthroughtheenvironment • Mapping–modelingtheenvironment
RelatedTerms StateEstimation Localization Mapping SLAM MotionPlanning Navigation
WhatisSLAM? Computingtherobot’sposesandthemapoftheenvironmentatthesametime Localization:estimatingtherobot’slocation Mapping:buildingamap SLAM:buildingamapandlocalizingtherobotsimultaneously
LocalizationExample Estimatetherobot’sposesgivenlandmarks
MappingExample Estimatethelandmarksgiventherobot’sposes
SLAMExample Estimatetherobot’sposesandthelandmarksatthesametime
TheSLAMProblem SLAMisachicken-or-eggproblem: →amapisneededforlocalizationand →aposeestimateisneededformapping map localize
SLAMisRelevant Itisconsideredafundamentalproblemfortrulyautonomousrobots SLAMisthebasisformostnavigationsystems map autonomousnavigation localize
SLAMApplications SLAMiscentraltoarangeofindoor,outdoor,airandunderwaterapplicationsforbothmannedandautonomousvehicles. Examples: Athome:vacuumcleaner,lawnmower Air:surveillancewithunmannedairvehicles Underwater:reefmonitoring Underground:explorationofmines Space:terrainmappingforlocalization 10
SLAMApplications Undersea Indoors Underground Space 11 CourtesyofEvolutionRobotics,H.Durrant-Whyte,NASA,S.Thrun
SLAMShowcase–Mint CourtesyofEvolutionRobotics(nowiRobot) 12
DefinitionoftheSLAMProblem Given Therobot’scontrols Observations Wanted Mapoftheenvironment Pathoftherobot
ProbabilisticApproaches • Uncertaintyintherobot’smotionsandobservations • Usetheprobabilitytheorytoexplicitlyrepresenttheuncertainty “Therobotisexactlyhere” “Therobotissomewherehere”
IntheProbabilisticWorld Estimatetherobot’spathandthemap distribution path mapgiven observations controls
GraphicalModel unknown observed unknown
FullSLAMvs.OnlineSLAM FullSLAMestimatestheentirepath OnlineSLAMseekstorecoveronlythemostrecentpose
WhyisSLAMaHardProblem? 1.Robotpathandmaparebothunknown 2.Mapandposeestimatescorrelated
WhyisSLAMaHardProblem? Themappingbetweenobservationsandthemapisunknown Pickingwrongdataassociationscanhave catastrophicconsequences(divergence) Robotposeuncertainty
TaxonomyoftheSLAMProblem Volumetricvs.feature-basedSLAM CourtesybyE.Nebot 25
TaxonomyoftheSLAMProblem Topologicvs.geometricmaps
TaxonomyoftheSLAMProblem Knownvs.unknowncorrespondence
TaxonomyoftheSLAMProblem Staticvs.dynamicenvironments
TaxonomyoftheSLAMProblem Smallvs.largeuncertainty
TaxonomyoftheSLAMProblem Activevs.passiveSLAM ImagecourtesybyPetterDuvander
TaxonomyoftheSLAMProblem Single-robotvs.multi-robotSLAM
ApproachestoSLAM LargevarietyofdifferentSLAMapproacheshavebeenproposed MostroboticsconferencesdedicatemultipletrackstoSLAM Themajorityoftechniquesusesprobabilisticconcepts HistoryofSLAMdatesbacktothemid-eighties Relatedproblemsingeodesyandphotogrammetry
SLAMHistorybyDurrant-Whyte 1985/86:Smithetal.andDurrant-Whytedescribegeometricuncertaintyandrelationshipsbetweenfeaturesorlandmarks 1986:DiscussionsatICRAonhowtosolvetheSLAMproblemfollowedbythekeypaperbySmith,SelfandCheeseman 1990-95:Kalman-filterbasedapproaches 1995:SLAMacronymcoinedatISRR’95 1995-1999:Convergenceproofs&firstdemonstrationsofrealsystems 2000:WideinterestinSLAMstarted
ThreeMainParadigms Kalmanfilter Particlefilter Graph-based
MotionandObservationModel "Motionmodel" "Observationmodel"
MotionModel Themotionmodeldescribestherelativemotionoftherobot distribution newpose given oldpose control
MotionModelExamples Gaussianmodel Non-Gaussianmodel
StandardOdometryModel Robotmovesfromto Odometryinformation .
MoreonMotionModels Course:IntroductiontoMobileRobotics,Chapter6 Thrunetal.“ProbabilisticRobotics”,Chapter5
ObservationModel Theobservationorsensormodelrelatesmeasurementswiththerobot’spose distribution observation given pose
ObservationModelExamples Gaussianmodel Non-Gaussianmodel
MoreonObservationModels Course:IntroductiontoMobileRobotics,Chapter7 Thrunetal.“ProbabilisticRobotics”,Chapter6
Summary Mappingisthetaskofmodelingtheenvironment Localizationmeansestimatingtherobot’spose SLAM=simultaneouslocalizationandmapping FullSLAMvs.OnlineSLAM RichtaxonomyoftheSLAMproblem
Literature SLAMoverview Springer“HandbookonRobotics”,ChapteronSimultaneousLocalizationandMapping(subsection1&2) Onmotionandobservationmodels Thrunetal.“ProbabilisticRobotics”,Chapters5&6 Course:IntroductiontoMobileRobotics,Chapters6&7