1 / 42

R o b ot M a p p i ng

Learn about robot mapping and SLAM (Simultaneous Localization and Mapping), which involves modeling the environment and estimating the robot's location and building a map simultaneously. Explore the relevance and applications of SLAM in various industries such as home automation, surveillance, underwater exploration, and space navigation.

aalicia
Download Presentation

R o b ot M a p p i ng

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RobotMapping IntroductiontoRobotMapping Courtesy of CyrillStachniss

  2. WhatisRobotMapping? • Robot–adevice,thatmovesthroughtheenvironment • Mapping–modelingtheenvironment

  3. RelatedTerms StateEstimation Localization Mapping SLAM MotionPlanning Navigation

  4. WhatisSLAM? Computingtherobot’sposesandthemapoftheenvironmentatthesametime Localization:estimatingtherobot’slocation Mapping:buildingamap SLAM:buildingamapandlocalizingtherobotsimultaneously

  5. LocalizationExample Estimatetherobot’sposesgivenlandmarks

  6. MappingExample Estimatethelandmarksgiventherobot’sposes

  7. SLAMExample Estimatetherobot’sposesandthelandmarksatthesametime

  8. TheSLAMProblem SLAMisachicken-or-eggproblem: →amapisneededforlocalizationand →aposeestimateisneededformapping map localize

  9. SLAMisRelevant Itisconsideredafundamentalproblemfortrulyautonomousrobots SLAMisthebasisformostnavigationsystems map autonomousnavigation localize

  10. SLAMApplications SLAMiscentraltoarangeofindoor,outdoor,airandunderwaterapplicationsforbothmannedandautonomousvehicles. Examples: Athome:vacuumcleaner,lawnmower Air:surveillancewithunmannedairvehicles Underwater:reefmonitoring Underground:explorationofmines Space:terrainmappingforlocalization 10

  11. SLAMApplications Undersea Indoors Underground Space 11 CourtesyofEvolutionRobotics,H.Durrant-Whyte,NASA,S.Thrun

  12. SLAMShowcase–Mint CourtesyofEvolutionRobotics(nowiRobot) 12

  13. SLAMShowcase–EUROPA

  14. MappingFreiburgCSCampus

  15. DefinitionoftheSLAMProblem Given Therobot’scontrols Observations Wanted Mapoftheenvironment Pathoftherobot

  16. ProbabilisticApproaches • Uncertaintyintherobot’smotionsandobservations • Usetheprobabilitytheorytoexplicitlyrepresenttheuncertainty “Therobotisexactlyhere” “Therobotissomewherehere”

  17. IntheProbabilisticWorld Estimatetherobot’spathandthemap distribution path mapgiven observations controls

  18. GraphicalModel unknown observed unknown

  19. FullSLAMvs.OnlineSLAM FullSLAMestimatestheentirepath OnlineSLAMseekstorecoveronlythemostrecentpose

  20. GraphicalModelofOnlineSLAM

  21. WhyisSLAMaHardProblem? 1.Robotpathandmaparebothunknown 2.Mapandposeestimatescorrelated

  22. WhyisSLAMaHardProblem? Themappingbetweenobservationsandthemapisunknown Pickingwrongdataassociationscanhave catastrophicconsequences(divergence) Robotposeuncertainty

  23. TaxonomyoftheSLAMProblem Volumetricvs.feature-basedSLAM CourtesybyE.Nebot 25

  24. TaxonomyoftheSLAMProblem Topologicvs.geometricmaps

  25. TaxonomyoftheSLAMProblem Knownvs.unknowncorrespondence

  26. TaxonomyoftheSLAMProblem Staticvs.dynamicenvironments

  27. TaxonomyoftheSLAMProblem Smallvs.largeuncertainty

  28. TaxonomyoftheSLAMProblem Activevs.passiveSLAM ImagecourtesybyPetterDuvander

  29. TaxonomyoftheSLAMProblem Single-robotvs.multi-robotSLAM

  30. ApproachestoSLAM LargevarietyofdifferentSLAMapproacheshavebeenproposed MostroboticsconferencesdedicatemultipletrackstoSLAM Themajorityoftechniquesusesprobabilisticconcepts HistoryofSLAMdatesbacktothemid-eighties Relatedproblemsingeodesyandphotogrammetry

  31. SLAMHistorybyDurrant-Whyte 1985/86:Smithetal.andDurrant-Whytedescribegeometricuncertaintyandrelationshipsbetweenfeaturesorlandmarks 1986:DiscussionsatICRAonhowtosolvetheSLAMproblemfollowedbythekeypaperbySmith,SelfandCheeseman 1990-95:Kalman-filterbasedapproaches 1995:SLAMacronymcoinedatISRR’95 1995-1999:Convergenceproofs&firstdemonstrationsofrealsystems 2000:WideinterestinSLAMstarted

  32. ThreeMainParadigms Kalmanfilter Particlefilter Graph-based

  33. MotionandObservationModel "Motionmodel" "Observationmodel"

  34. MotionModel Themotionmodeldescribestherelativemotionoftherobot distribution newpose given oldpose control

  35. MotionModelExamples Gaussianmodel Non-Gaussianmodel

  36. StandardOdometryModel Robotmovesfromto Odometryinformation .

  37. MoreonMotionModels Course:IntroductiontoMobileRobotics,Chapter6 Thrunetal.“ProbabilisticRobotics”,Chapter5

  38. ObservationModel Theobservationorsensormodelrelatesmeasurementswiththerobot’spose distribution observation given pose

  39. ObservationModelExamples Gaussianmodel Non-Gaussianmodel

  40. MoreonObservationModels Course:IntroductiontoMobileRobotics,Chapter7 Thrunetal.“ProbabilisticRobotics”,Chapter6

  41. Summary Mappingisthetaskofmodelingtheenvironment Localizationmeansestimatingtherobot’spose SLAM=simultaneouslocalizationandmapping FullSLAMvs.OnlineSLAM RichtaxonomyoftheSLAMproblem

  42. Literature SLAMoverview Springer“HandbookonRobotics”,ChapteronSimultaneousLocalizationandMapping(subsection1&2) Onmotionandobservationmodels Thrunetal.“ProbabilisticRobotics”,Chapters5&6 Course:IntroductiontoMobileRobotics,Chapters6&7

More Related