1 / 29

Accelerators and Photons .

Accelerators and Photons . Trends, challenges, opportunities Reinhard Brinkmann, DESY. Synchrotron radiation storage rings – the flagships . ESRF. SPring 8. PETRA III. APS. PETRA III. Storage rings – basic parameters. The future : Ultimate storage ring .

abiola
Download Presentation

Accelerators and Photons .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Accelerators and Photons. Trends, challenges, opportunities Reinhard Brinkmann, DESY

  2. Synchrotron radiation storage rings – the flagships ESRF SPring 8 PETRA III APS PETRA III

  3. Storage rings – basic parameters

  4. The future: Ultimate storage ring Invitedpaperat EPAC2000, Vienna: Intensive worktowardsultimateperformancestarted > 10years agowiththe ESRF groupand Pascal Elleaume† being a strong drivingforce

  5. Ultimate storage ring – emittancechallenge • Ultimate performancerequires e-beam emittancecomparabletophoton beam emittance („diffractionlimit“) e  ph = ph/4 • Beam emittance 10pm*radfor 1Å wavelength! • TME multi-bendachromatlatticewith large # ofdipolemagnets • Compromisefordynamicaperture • Relax focusing,  ~ factor 3 above theoreticallimit M. Borland et al, 2010

  6. Strong sextupoles – smalldynamicacceptance Analytical scalingestimate : Ax ~ x2/3 …. x

  7. Intrabeam – effects:  roundbeams • Forextremelydensebunches, Touscheklifetimedropsstrongly & emittancegrows due to IBS  don‘taimfory << x • Operate on x-y couplingresonancey = x • Gain a factoralmost 2 in zero-current xandreducegrowth due to IBS A. Xiao, IBS calculationsfor USR7 (2009)

  8. U.S.R.‘scont‘d • Storage ring near ~10pm*radverychallenging, but not impossiblewithstate-of-the-art technology • Top-upmodewithaccumulationofsmall Portionsof beam unlikelytowork fast on-axis kickerconcept Very large rings advantageous: practicalities (manymagnets!), effectiveuseofdamping Wigglers, forgivenlattice type acceptance proportional tocircumference ( usageofexistinginfrastructure PEP, PETRA, HERA) • USR withevensomewhat relaxed parameters (~50pm) hasnormalisedemittances <1mm*mradcompetitivewithlinac-drivensources !? • Longitudinal emittancemuchtoo large/peakcurrentmuchtoolow (factor ~100) todrivehard x-ray SASE FEL • Partial lasingconceivable: Lg ~100m forIpk = 50A – useK-J Kim et al. XFEL-oscillatorconcept?? (proposedfor an ERL!) Top-upoperation in PETRA-III

  9. Storage rings advanced-I: round-beam insertion skew triplet s.c. solenoid & undulator skew triplet • Consider „conventional“ ring with e.g. 2GeV, x = 1nm, y = 0.01nm, wantdiffraction limited beam at 1nm wavelength • Insteadofcouplingresonancewhere, x +y = const, usetransformation flat-to-round beam in an undulatorinsertionwherexy = const = 2,  = 0.1nm(R.B. EPAC 2002) • Possiblewithskewquadtransformation + solenoidfield (in practice: s.c. solenoid + helicalundulator in onedevice) (transformationconceptoriginallyproposedby Y. Derbenevfor e-cooling 1998) • Couldprovidediffraction limited 1nm soft X-rays in an (almost) existing ring • Has not madeitintopractice…(yet?): solenoid/undulatordevice not easy to design & build, concernskeepingthe flat-round-flat transformationperfectlyclosed, cost. schedule, userinterest…

  10. Storage rings advanced-II: fspulses/slicing Selectionofshortphoton pulse byenergymodulation + transversedisplacement idea: A. Zholents, M. Zolotorev, PRL 76 (1996), 912 firstexperiment (ALS): R. W. Schoenlein et al., Science 287 (2000), 2237 Courtesy Shaukat Khan, TU Dortmund Recentideaat DELTA/Dortmund: useseedingforcoherentgeneration & possibly EEHG schemetoproduce VUV radiationpulses

  11. Storage rings advanced-III: pspulses/rfdeflection Photon pulse shorteningbylong.-verticalcorrelationwithdeflectingmodecavity idea: A. Zholentset al. NIM A425 (1999), 385 (From K. Harkay et al., PAC2005)

  12. FELs – operational & underconstruction/commissioning LCLS-2009 FLASH-2005 2011 EU-XFEL-2015 … + FEL projects in Italy, Korea, Switzerland, …

  13. FEL parameters – SASE operation

  14. t=50 fsec t=100 fsec Neutze, Wouts,van der Spoerl, Weckert, Hajdu: Nature 406 (2000) 752-757 Peak brilliance in entirelynewregime

  15. Remarkableagreementofperformancewithpredictions • Excellentinjectorperformanceandverysmallemittancedilution in linac & bunchcompressors • Built-in safetymargins not reallynecessary – saturationreachedover ~half of total undulatorlength •  LCLS (& EU-XFEL) canreachperformncewellbeyond design specs •  forgivenwavelength design goal, beam energycanbelower LCLS commissioning April 2009: From P. Emma, PAC2009

  16. Parameter scaling – beam energy, emittance (parametrisationofstudiesby Saldin, Schneidmiller, Yurkov) • Not gainlength, but coherence (andpeakbrilliance ~Ebeam) stronglydependendent on energy (via absoluteemittance) • Injectorperformanceisthecrucialelementfor FEL facilitycost (Energy!) & performance

  17. Injector R&D – example PITZ @ DESY-Zeuthen

  18. “core” emittance for different bunch charges • Idea: Cut lowintensityregionof MEASURED phasespace (nolasing) 100% of 1nC:εx = 0.92 mm mrad, εy = 0.84 mm mrad preliminary yy´ xx´ Why not startwithhigherchargeandcollimatethebunch? (lookslikecouldgainfactor 2…3 in emittance, but: wakefields, radiationprotection, …) *LCLS results: projected emittance, 95% RMS values. D. Dowell + P. Emma, priv. commun. + FEL2009

  19. Towardssinglespikeswithlow-charge, shortbunches 150 pC 500 pC FLASH 2011 Bandwidth 1.3% Bandwidth 1.8 % ph ~ 15fs LCLS simulationat 1.5nm, 20pC bunchcharge (from Y. Ding et al., PAC09) FEL operation @20pC successfullydemonstrated

  20. Alternative to SASE FEL: seedingconcepts • HGHG: modulationwithopticallaser amplificationofhigherharmonics in severalstages • HHG: modulationwith high harmonicsofopticallasergeneratedbyinteractionwith a gas (orcombinationofboth)

  21. New idea: echo-enabledharmonicgeneration - proposed: G. Stupakov, PRL 102 (2009), 074801 - 1st experimental resultsat SLAC, D. Xiang et al. IPAC10 simulations by D. Xiang and G. Stupakov (2009) radiator laser 1 l1 laser 2 l2 modulator 2 modulator 1 Courtesy Shaukat Khan, TU Dortmund VUV pulse l/n

  22. Energyrecoverylinacs • 1st idea (forsuperconducting linear collider) by M. Tigner, NuovoCimento 1965 • Rapidlygrowinginterest in ERL concepts & projectsoverpast ~10 years (JLAB, Cornell, BNL, BINP, KEK, HZB, DESY, …) !: Cornell injector prototype achieved: 4mA, 0.4 – 1.5mm*mrad (I. Bazarov et al. PAC09)

  23. R&D on CW-injectorscrucial – synergywiths.c. FELs (Examples, not exhaustive) Trend forfutures.c. FELs (orupgrades) goestowardscw-operation – overlapwithdevelopmentprogrammefor ERLs

  24. Option for ERLs (ors.c. FELs): XFEL oscillator R. Colella, A. Luccio, OpticsComm. 50 (1984), K.-J. Kim, Y. Schvydk‘ovand S. Reiche, Phys. Rev. Lett. 100 (2008) CourtesyJohann Zemella, Univ. Hamburg Build-upof FEL radiationtowardssteady-stateoverseverals 10s ofpulses Extremelynarrowline 10-5 – 10-6/high spectralbrightness

  25. Photon sourceswithplasmaacceleration? 0 p/p  Emittance from LPWA withm sourcesizeandmradrmsdivergencecanbeof same orderasfromconventional beam source: L = focal length Chromaticemittancedilutionis not negligible!

  26. Synergiesandopportunities • Acceleratorphysicsandtechnologydevelopedforphotonsourcesaswellasavailableinfrastructurehave overlapwithdevelopmentsofplasmaacceleration – opportunitiestousesynergiesandjointlyadvancethisfieldofacceleratorresearch • Generation & dynamicsoffs-beams • Fs-synchronisation & diagnostics • Usageoftestfacilities & acceleratorinfrastructuresforplasmaaccelerationexperiments • …

  27. temperature controlled birefringent crystal motorized rotationstage OSS signal (UV) Will, Klemz, Optics Express 16 (2008) , 4922-14935 Example: using PITZ for plasma-wakefieldexperiment (similartoideaofcomb-beam by M. Ferrario et al.) Pulse shaperlaserby MBI Bunchstructurewith e.g. 5 or 6 spikesandapproximately linear increase in bunchchargeshouldbepossible Compressionofthisstructuretomatchplasmawavelength Demonstration of large transformerratiowithplasmawakefieldexperimentconceivable

  28. Example: using FLASH (II) totest LPWA withexternallyinjected beam Civilconstructionfor FLASH-II startsthisyear Useonebunch per linac pulse ofextracted FLASH-II beam forplasmaaccexperiments

  29. Thankyouforyourattention!

More Related