540 likes | 551 Views
Explore Brehme and Loedel diagrams, relativistic vista of spacetime geometry, invariance of distance, and spacetime interval. Understanding principles like constancy of light speed, time dilation, simultaneity, length contraction, and Lorentz transformation in Cartesian coordinates. Discover the differences between world lines and trajectories and grasp the concept of off-synchronization and proper time.
E N D
Cartesian Coordinates y y • P (x, y) • x O x
Cartesian Coordinates y' y' • P (x', y') • O x' x'
Cartesian Coordinates invariance of distance y y' y' y • P (x', y') P (x, y) • x O x x' x'
Brehme Spacetime Diagram Exchange Ot axis and Ot' axis
Brehme Spacetime Diagram ct' ct x' O • x
Oblique Coordinates ct O • x
Brehme Diagram (perpendicular components) ct • E (ct, x) ct • x O x
Loedel Diagram (parallel components) ct ct • E (ct, x) • x O x
World Line ct ct3 ct2 • E ct1 • x x1 x2 x3 O
World Line ct rest at x in for all time t parallel to t -axis • E • • x x O
World Line ct' ct rest at x' in ' for all time t' parallel to t' -axis perpendicular to x -axis •E x' • x' • x O
World Line ct • E ct2 ct1 • x O x1 x2
World Line of Light 角平分線 ct T • • E 3 4 ct 2 1 X O • • x x
World Line of O' ct x ct • E ct ct x • x O x
Loedel Diagram ct' ct x' • E x' ct' ct' x' • x O
Loedel Diagram ct' ct x' • E x' ct' ct' • x O x'
Loedel Diagram ct' ct • • E (ct, x) or E(ct', x') ct • x' ct' x' • • • x O x
Principle of Constancy of Light Speed ct' ct • • E(ct, x) E ct x' • O • x x
Principle of Constancy of Light Speed ct' ct • E(ct',x') E • ct' x' • x' O • x
Principle of Constancy of Light Speed ct' ct • • E(ct , x) or (ct',x') ct • ct' x' • x' • O • x x
Time Dilation ct' ct • E2 C2 • • A2 • c E1 ct x' • • A1 C1 • x' • x O
Time Dilation ct' ct • • E2 B2 C2 • ct • A2 proper time • • c E1 B1 ct x' • • A1 C1 • x' same place in ' • x O
Time Dilation ct' ct • E2 C2 • • A2 proper time • c E1 ct x' • • A1 C1 • x' • x O
Time Dilation ct' ct • C2 • • A2 E2 ct c • C1 x' • • E1 A1 x • • x O
Time Dilation ct' ct • C2 • • A2 E2 • ct' B2 c • ct' x' proper time C1 • • E1 A1 • B1 x • • x O same place in
Time Dilation ct' ct • C2 • • A2 E2 ct' c • C1 x' proper time • • E1 A1 x • • x O
World Line of Light 角平分線 ct O • x
v ct' D • O' • C • • • • ct O B A • B • v • x' C D • O' C • • • • • • • • O • B A A D • x O v D O' C • • • • • • O B A • • v D O' C • • • • • • B O A
v Events C and D ct' D • O' • C • • • • ct O B A v • • x' C D O' C • • • • • • • • • • O B A A D • x O v D O' C • simultaneous in ' • • • • • O t'C = t'D B A tD < tC • •
ct' • O' • • • • ct • -v O x' O' • • • • • • -v O • x O O' • • • • • • -v O O' • • • • • • -v O
ct ct' E2 after E1 in ' In , E2 and E1 are simultaneous • ct2 • • • E1(x,t2) or (x',t2') E1 E2 • ct2' x' E2' • • • E2' before E1 in x' • • • x x O In ', E2' and E1aresimultaneous •
Length Contraction ct' ct • L ct1 • • • simultaneous measurements at time t1 in x' B • A • L0 (proper length) O • x world lines of A and B
Length Contraction ct' ct • L • • ct'1 • simultaneous measurements at time t'1 in ' x' world lines of A and B A B • • O • x L0 (proper length)
Off -Synchronization ct ct' c = L sin = L v/c L ct' • • • ct(proper time) Time dilation : ct' = ct Time dilation :ct = (ct' - c ) x' • x O • L trailing clock leading clock
Lorentz Transformation ct' ct • B • E (ct, x) or E(ct', x') D • x' ct ct' • x' C C' • • • x O A x
Lorentz Transformation ct' ct x • B • E (ct, x) or E(ct', x') D • x' • D' ct • C ct' x' • • x x O A