420 likes | 626 Views
Progress Report and Plan. Contents Development of Polarized Electron Source Test Facility Detector R&D. 2001. 11. 23-24. 제 3 총괄과제 발표자 : 김귀년. 1. Development of Polarized Electron Source. 연구목표 차세대 선형가속기 충돌실험에 필요한 편극 전자빔원 개발과 이를 이용한 실험연구 2 차 년도연구목표
E N D
Progress Report and Plan • Contents • Development of Polarized Electron Source • Test Facility • Detector R&D 2001. 11. 23-24. 제 3 총괄과제 발표자: 김귀년
1. Development of Polarized Electron Source • 연구목표 • 차세대 선형가속기 충돌실험에 필요한 편극 전자빔원 개발과 이를 이용한 실험연구 • 2차 년도연구목표 • 편극 전자총 시험장치 성능 보완 및 70 keV 편극 전자총 개발 • 연구 내용 • - 편극 전자총 시험장치 성능보완 및 편극도 측정 실험 • - 70 keV 편극 전자총 빔라인 설계 • - Mott 편극계 개발 • 참여연구인력 • 손동철, 김귀년, 이만우, 이경주, 고인수, 박성주
Gun Chamber Mott Chamber Faraday Cup 편극 전자총 시험장치 성능보완 • TMP 구매, RGA 및 기타 진공부품 구매 추진 중 (120l/s)
Laser Gun Chamber Mott Chamber Faraday cup RGA O2 leak Valve e beam Layout of PES Test-Stand
Mini-Mott Chamber From Rice University
PEGGY Gun 70 keV 편극 전자총 빔라인 설계 PEGGY Gun 용 빔 라인 설계 중
LC 용 RF 편극전자빔원 개발 • 일본 KEK, Nagoya 대학과 공동연구 추진 중 • - 포항가속기연구소의 RF 관련 기술 및 인력 이용 • - 100 MeV, 2 GeV 전자 선형가속기에서 편극 전자총 시험 • - Nagoya 대학의 GaAs 광음극 개발 기술 활용 • - Nagoya/KEK 그룹의 DC PES 개발 기술 활용
3 차연도 연구내용 • PES TEST Stand 성능 개선 및 편극전자빔 인출실험 • 1. Vacuum System : RGA, Metal Gate & R/A Valves, Nude gauge • 2. Eelectrostatic Bend System 제작 • 3. Mott Polarimeter system: support, Resistor Network • RF 편극전자빔원 개발참여 • 일본 KEK, Nagoya 대학과 공동연구
2. Test Facility • 연구목표 • 포항가속기연구소의 100-MeV 및 2-GeV 급 전자가속기를 이용한 검출기 성능시험설비 구축과 성능시험에 필요한 인프라 구축 • 2차년도 연구목표 • 검출기 성능시험설비 상세 설계 및 구축 • 2차년도 연구 내용 • - 100-MeV 전자선형가속기를 이용한 성능 시험설비 상세 설계 및 구축 • 2-GeV 전자선형가속기를 이용한 성능 시험설비 상세 설계 • 데이터 획득장치 구축 및 성능 실험 (오영도 발표 참조) • 참여 연구인력 • 손동철, 김귀년, 오영도, 조기헌, 이영석, 이만우, 박웅화, 김동호, 고인수
검출기 성능시험설비 • Radiation Hardness Test Facility • - Using 100-MeV electron linear accelerator • Single Electron Beam Facility • - Using 2 GeV electron linear accelerator • Quasi-Monochromatic Photon Beam Facility • - Using 2.5 GeV Storage Ring
Radiation Hardness Test Facility 100-MeV electron Linac • Design parameters • - Beam energy: 100 MeV • - Beam current: 100 mA • - Pulse length: 8 s, 10 Hz • - Beam emittance: < 30 mm-mrad • - Energy spread: < 1 % • Machine status • - Beam energy: 75 MeV • - Beam current: 100 mA • - Pulse length: 3 s/ 10 Hz • - Energy spread: 1 % • - Emittance: not measured
Detector Neutron Neutron Detector Gold-foil Test Set up with Low Energy Neutrons
Thin Target e-Beam Bending Magnet Detector Single Electron Beam Facility • Purpose: Calibration of a new detector • Principle: By means of electron-Nucleon Scattering - 가속기연구소의 적극적인 지원 없이는 구축 불가
Quasi-Monochromatic Photon Beam Facility • Maximum Photon energy: • 200 MeV (Ee=2GeV), 300 MeV(Ee=2.5GeV) • Photon Yield: • Application Field • - Standard Photon Beam Facility • - Beam diagnostic tool of storage ring • - Nuclear Physics • - Nuclear Data Production
Laer Parameter Electron Beam Laser-Compton Photon Wavelength (nm) Energy (GeV) Maximum energy (MeV) Yield* (photon/secW) Nd:YLF First 1053 2.0 2.5 69.6 107.9 6.6107 Second 527 2.0 2.5 134.5 206.6 3.3107 Third 351 2.0 2.5 195.3 297.9 2.2107 Fourth 265 2.0 2.5 250.7 379.9 1.6107
3 차 연도 연구 계획 • 검출기 성능시험설비 이용 실험 • - Radiation Hardness Test Facility 이용 기반 설비 구축 • Neutron Beam Monitoring System • Data Acquisition System • Data Analysis Software • - Quasi-Monochromatic Photon Beam Facility 구축 계획 추진 • 포항가속기연구소와 공동연구 • 국내외 핵물리연구 관련자들과 공동연구 • 핵자료 관련 연구자들과 공동연구
3. Detector R&D • 연구 목표 • 차세대 인공위성 탑재 검출기 개발 • 2 차년도 연구 목표 • - AMS 검출기에 쓰일 방사광 검출기 개발 • - 인공위성 탑재용 실리콘 검출기 개발 • 2 차년도 연구 내용 • - 우주선(뮤온) 검출기 제작 및 실험 • - AMS 관련: SRD, TRD, Magnet • 참여 연구인력 • 손동철, 양종만,김귀년,박환배, 조기현, 오영도, 이만우, 박웅화, • 김동호, 김경숙, 김미영, 로상율, M. Rachid, H. Ahmed
Flux of cosmic rays per unit solid angle When we require cosmic rays to pass through two surfaces, each of width w and length l, separated by a distance d, the expected rate should be Cosmic Ray Detector 1 [counts/min] Detector 2 Cosmic Ray Muon Detector If l=20cm, w=15cm, and d=80cm, then N = 9/min.
(unit : mm) Schematic Diagram 1/4 102.? 70 D B (Top view) A C f 52.? 150 t=5 Ref. 3/4 200 B D A 10 (Cross section) C A(Plastic scintillator), B(Light guide) C(PM tube + H.V. socket assembly) D(Photo-tube holder) Cosmic Ray Muon Detector
Cosmic Ray Discriminator AND Detector 1 Gate Generator ADC Detector 2 PC OS: Linux VMEMasterModule PCIADA DAQ Program Electronics for Cosmic ray Muon Detector
Fan In Fan Out Discriminator Coincidence ADC Gate Generator VMEMasterModule PCIADA Experimental Arrangement
Real data Histogram: MC • Real data Histogram: MC L=50 cm =90o Flux(/min.) Flux(/min.) Distance (cm) Angle (degree) Compare with MC Data
AMS Collaboration Detector R&D for AMS-02
AMS Collaboration (1) Synchrotron Radiation Detector • Aim • - Identify the charge of TeV electrons and PeV nuclei using their synchrotron radiation in the earth’s magnetic field by observing synchrotron photons (Ethr KeV and eV respectively) in detector (2x3 m2). • - Photon’s position, counting and energy measurements give info on: • Particle’s charge sign, estimation on primary electron momentum • -> hence distinguish electrons from nuclei. • Nov. 29, 2001, a small stand-alone detector (PSRD) will fly as secondary payload on the Space Shuttle. • - For this flight, 16 YAlO3:Ce(YAP) scintillating crystals of size 25x25x2 mm3 will be coupled directly to Hamamatsu R5900U PMTs. • SRD will be installed on AMS-02 if PSRD will give good results
AMS Collaboration Principle and Requirement • Principle • Requirement: • - Very good Energy and Time Resolution: 1 mm thick YAP Crystal (YAlO3:Ce) • Position Measurements and for rejection of charged particles with very good Time Resolution: 500 Silicon Strip Detector • Highly integrated, very fast, low power Readout Electronics (40 MHz)
AMS Collaboration Experiment on the YAP window Channel Photo Multiplier M. W. Lee, J. W. Shin, G. N. Kim, D. Son Institute of High Energy Physics, Kyungpook National University, Taegu 701-702, Korea K. S. Kim, J. Yang Physics Depeartment, Ewha Womans University, Seoul 120-750, Korea O. Grim, G. Viertel, H. Hofer Institut fur Teilchenphysik der ETH, 8093 Zurich, Switzerland (Work Done during staying in ETH, Zurich, Jun. 16 - Aug. 16, 2001)
AMS Collaboration Fig. 1. Schematic view of a CPM with an electrical connection Channel Photo-Multiplier Manufacture's specification of CPMs C1344 / SN: B032-25 C1340 P/ SN:B050-46 Photocathode Bi-alkali Bi-alkali Faceplate Material Borosilicate YAP Spectral Sensitivity [nm] 300 - 650 300 - 650 Quantum efficiency at 410 nm [%] 23.1 22.2 Gain at 2.0 kV [106] 2.6 2.9 Dark current at 2.0 kV [pA] 77.6 61.7 Bias current at 2.0 kV [A] 37 37
AMS Collaboration Experimental Setup for the YAP-CPM test
Single photoelectron gainfor the various bias high voltages • Quantum Efficiency • Saturation Characteristics • Sensitivity • Dark Count Rate • Energy Resolution Fig. 9. Energy resolution vs. bias voltage Fig. 10. Resolution of 1.8kV bias voltage vs. photon energy
AMS Collaboration Participate PSRD Experiment on the Space Shuttle STS-108 • Launch Date : Nov. 29, 2001 • (G. N. Kim and M. W. Lee will participate PSRD Experiement from Nov. 25 – Dec. 16.) • Purpose of Experiment: • Measurement of the Photon Background in the keV Energy range • Measurement of the Low Energy Charged particle background • Test of the highly integrated, very fast, low power Readout Electronics
AMS Collaboration 3 차 연도 연구 계획 1. Testing a YAP Crystal with a normal window Channel Photo Multiplier (CPM) 2. Test of X-ray detector for SRD using Source and/or the PLS at PAL 3. PSRD data analysis 4. MC simulation study of SRD 5. Collaboration work with ETH, Zurich
AMS Collaboration (2) Transition Radiation Detector • Aim: • Non-destructive information for particle identification in addition to • electromagnetic calorimeter • Identification of hadrons (’s against K’s and p’s) and electrons • Final goal is good e/h separation between 1-2 (TRthr) GeV to about 100 GeV • (hadrons start to radiate) • e/p Rejection 1.5 to 4 10-3 with 90%95% electron efficiency • 6 mm diameter, 1.3 to 2 m long straw tubes • Radiators: Foam (Airex) or (10 m or 16 m) fibre (0.06 g/cm3) • Gas mixture: Xe/CO2 80/20, gain 2.5 104 • Operating temperature interval: +10° C to + 25° C (gradient 1 K) • Weight: 484 kg (350 kg detector) • Test beam with e and p (3.5 to 15 GeV) • Tests and studies are underway for the final choice of radiator, gas mixture • and GCPS, vacuum properties of straw tubes, radiator outgassing, mechanical • stability etc.
AMS Collaboration Transition Radiation Detector
AMS Collaboration Front End electronics Chip 개발
EPP protocal EPP port REGISTER Print port POWER (5V) POWER APEX Chip PC(Window98) Guido Board Test Test Set Up Guido Board (S9007)
AMS Collaboration TRD Simulation • AMS simulation software 를 이용하여 TRD 부분을 simulation 할 수 있도록 준비되었음 (현재 수정 보완 중) • - gammar ray 의 백그라운드를 이해하기 위해서 • TRD honeycomb plate 부분의 simulation study 를 하려고 준비 중
AMS Collaboration 3 차 연도 연구 내용 • TRD DAQ 부분 : Rwth-Aachen, MIT, CAEN 등과 공동연구 • - Front Electronics Chip Design and Test • - Guido Board Test • 2. TRD simulation 부분 :Rwth-Aachen, MIT 등과 공동연구 • - Program the detail structure of Honeycomb • - Gamma Ray Background Simulation Study • 3. Electronic Board Test
AMS Collaboration Critical Parameters of Magnet Nominal Bending Power: 0.85 Tm2 Stray field @ radius of 230 cm: < 15.2 mT Peak in coil: 6.6 T N. of Coils: 2 Dipoles, 20 racetracks Magnetic Torque: 0.272 Nm Conductor: NbTi wire, Aluminum stabilized Operating Temperature: 1.8 K @ 20 mbar (2600 lt superfluid Helium) Operating Current: 450 A Power: 1.5 kW (peak, during ramp), 400 W (maintenance) Endurance: 27 to 33 months (w cryocoolers) Weight: about 3 tons (whole magnetic system) Dimensions: 2.7 m of diameter and 1.5 m of max height ▶ SC Magnet Self Protection System(김미영 발표) - Energy source for the Quench - Quenching Circuit
AMS Collaboration 3 차 연도 연구 내용 • Superconducting Magnet : 참여 부분에 대하여 논의 중 • - Supporting System 제작 참여(?) • - Cryogenic System 제작 참여 (?) • Quenching Circuit Test • - Test without Coils - Test with Coils • - 기타 관련 Test 참여