1 / 35

Chapter 2

Chapter 2. Logic Gates By Taweesak Reungpeerakul. Contents. Inverter AND Gate OR Gate NAND Gate NOR Gate XOR and XNOR Gates Integrated Circuit Logic Gates. Symbols Truth Table In Out 0 1 1 0. Timing Diagram Logic Expression: Out = In. 2.1 Inverter (INV). 0. 1. 1.

Download Presentation

Chapter 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 2 Logic Gates By Taweesak Reungpeerakul

  2. Contents • Inverter • AND Gate • OR Gate • NAND Gate • NOR Gate • XOR and XNOR Gates • Integrated Circuit Logic Gates 242-208 CH2

  3. Symbols Truth Table In Out 0 1 1 0 Timing Diagram Logic Expression: Out = In 2.1 Inverter (INV) 0 1 1 0 242-208 CH2

  4. Symbols Truth Table A B Out 0 0 0 0 1 0 1 0 0 1 1 1 Timing Diagram Logic Expression: Out = AB 2.2 AND Gate 242-208 CH2

  5. Symbols Truth Table A B Out 0 0 0 0 1 1 1 0 1 1 1 1 Timing Diagram Logic Expression: Out = A+B 2.3 OR Gate 242-208 CH2

  6. Symbols Truth Table A B Out 0 0 1 0 1 1 1 0 1 1 1 0 Timing Diagram Logic Expression: Out = AB 2.4 NAND Gate 242-208 CH2

  7. Symbols Truth Table A B Out 0 0 1 0 1 0 1 0 0 1 1 0 Timing Diagram Logic Expression: Out = A+B 2.5 NOR Gate 242-208 CH2

  8. Symbols Truth Table A B Out 0 0 0 0 1 1 1 0 1 1 1 0 Timing Diagram Logic Expression: Out = AB+AB; AB 2.6 XOR Gate 242-208 CH2

  9. Symbols Truth Table A B Out 0 0 1 0 1 0 1 0 0 1 1 1 Timing Diagram Logic Expression: Out = AB+AB; AB XNOR Gate 242-208 CH2

  10. CMOS: Complementary Metal-Oxide Semiconductor Low Power Dissipation DC Power Supply: 5 V & 3.3 V CMOS Series: 74 + letter(s) + numbers Letters: HC, HCT = High-speed CMOS LV, LVC = Low-voltage CMOS BCT = BiCMOS (combine CMOS&TTL) Numbers: 00= Quad 2-input NAND 02= Quad 2-input NOR 04= Hex inverter TTL: Transistor-Transistor Logic Not Sensitive to Electrostatic Discharge Switching Speed DC Power Supply: 5 V TTL Series: 74 + letter(s) + numbers Letters: S = Schottky TTL LS = Low-power Schottky TTL F = Fast TTL Numbers: 08= Quad 2-input AND 10= Triple 3-input NAND 32= Quad 2-input OR 2.7 Integrated Circuit Logic Gates 242-208 CH2

  11. Packages DIP IC Gate Config. 2.7 IC Logic Gate (cont.) 242-208 CH2

  12. Propagation Delay Time: tP , tPHL , tPLH DC Power Supply: 3.3, 5V Power Dissipation (PD) PD = VCC (ICCH+ICCL)/2 I/O Logic Levels TTL: VIL =0.8 V, VIH =2 V VOL =0.4 V, VOH =2.4V Speed-power Product (SPP) SPP = tP*PD Fan-out and Loading Fan-out: max # gates connected at the output pin Unit loads = IOH/IIH or IOL/IIL Data Sheets Performance Characteristics & Parameters 242-208 CH2

  13. Contents (Session 2) • Boolean Operations & Expressions • Rules of Boolean Algebra • DeMorgan’s Theorems • Simplification Using Boolean Algebra • Standard Forms of Boolean Algebra • Karnaugh Map 242-208 CH2

  14. Boolean Addition is equivalent to the OR operation. 0+0 = 0 0+1 = 1 1+0 = 1 1+1 = 1 Boolean multiplication is equivalent to the AND operation. 0·0 = 0 0·1 = 0 1·0 = 0 1·1 = 1 2.8 Boolean Operations & Expressions 242-208 CH2

  15. A+B = B+A AB = BA A+ (B+C) = (A+B)+C A(BC) = (AB)C A(B+C) = AB+AC A+0=A A·A=A A+1=1 A·A=0 A·0=0 A=A A·1=A A+A=A A+A=1 A+AB=A A+AB=A+B (A+B)(A+C)=A+BC 2.9 Rules of Boolean Algebra 242-208 CH2

  16. 2.10 DeMorgan’s Theorems • The complement of a product of variables is equal to the sum of the complements of the variables. XY = X + Y • The complement of a sum of variables is equal to the product of complements of the variables. X + Y = X·Y 242-208 CH2

  17. Ex#1: (AB+C)(BC) = (AB+C) +(BC) = (AB)C +(B+C) = (A+B)C + B+C Question: (A+B)CD Ans: (A ·B)+C+D Ex# 2: AB + CDE = (AB) · (CDE) = (A+B) · (CD+E) = (A+B) · (CD+E) Question: A+B+C+DE Ans: ABC+D+E Examples of DeMorgan’s theorem 242-208 CH2

  18. 2.11 Boolean Analysis of Logic Circuits Truth Table A B C D (AB+C)D 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 A AB B AB+C C D (AB+C)D 242-208 CH2

  19. EX#1: AB+A(B+C)+B(B+C) = AB+AB+AC+BB+BC = AB + AC + B + BC = B + AC Question: AB+AC+ABC Ans: A+BC EX#2: ABC+ABC+ABC+ABC+ABC = BC+ABC+ABC+ABC = BC+BC+ABC = BC+B(C+AC) = BC+B(C+A) = BC+BC+AB 2.12 Simplification using Boolean Algebra 242-208 CH2

  20. Sum-of-Products (SOP): 2 or more product terms are summed by Boolean addition such as AB+ABC+AC Ex# 1: (A+B)(C+D)  SOP form = AC+AD+BC+BD Ex# 2: (A + B) + C = AC + BC Standard SOP Form: all variables in the domain appear in each product term such as ABC+ABC+ABC Ex# 1: AB+ABC  standard SOP = AB(C+C)+ABC = ABC+ABC+ABC Ex# 2: B+ABC = B(A+A)+ABC = AB+AB+ABC = AB(C+C)+AB(C+C)+ABC = ABC+ABC+ABC+ABC+ABC 2.13 Standard Forms of Boolean Expressions 242-208 CH2

  21. Product-of-Sum (POS): 2 or more sum terms are multiplied such as (A+B)(A+B+C) Standard POS: all variables in the domain appear in each sum term such as (A+B+C)(A+B+C) Ex# 1: (A+C)(A+B+C)  standard POS = (A+C+BB)(A+B+C) =(A+B+C) (A+B+C) (A+B+C) Question: (A+C)(A+B)  std. POS Standard Forms (cont.) Ans: (A+B+C) (A+B+C) (A+B+C)(A+B+C) 242-208 CH2

  22. Std. SOP to std. POS Example: ABC+ABC+ABC+ABC+ABC 101 011 100 001 000 3 variables 23 = 8 possible combinations Remained terms: 111, 110, 010 Std. POS = (A+B+C)(A+B+C)(A+B+C) 242-208 CH2

  23. SOP  Truth Table EX: ABC+ABC+ABC+ABC 000 010 101 110 out=1 A B C Out 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 POS Truth Table EX: (A+B+C)(A+B+C)(A+B+C) 100 010 011 out=0 A B C Out 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 2.14 Boolean Expressions and Truth Tables 242-208 CH2

  24. 2.15 The Karnaugh Map • The Karnaugh map is an array of cells in which each cell represents a binary value of the input variables. • The number of cells is 2n, n is number of variables 3 Variables ABC ABC ABC ABC ABC ABC ABC ABC Question: 4 variables Karnaugh map 242-208 CH2

  25. 2.16 Karnaugh Map SOP Minimization Ex1: Map and minimize the following std. SOP expression on a Karnaugh map: ABC+ABC+ABC+ABC 000 001 110 100 AB 1 1 1 1 1 1 1 1 AC Answer: AB+AC 242-208 CH2

  26. SOP Minimization (cont.) Ex2: Map and minimize the following SOP expression on a Karnaugh map: AB+ABC+ABC 110 111 010 011 B 1 1 1 1 1 1 1 1 Answer: B 242-208 CH2

  27. Karnaugh Map Simplification • Grouping 1s - Each group must contain 1,2,4,8,or 16 - Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the group do not have to be adjacent to each other. - Always include the largest possible number of 1s in a group - Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include non-common 1s. 242-208 CH2

  28. Group the 1s in each of the Karnaugh maps ABC AC BC D BC ABC 1 1 1 1 1 1 1 1 1 AB C AB 1 1 1 1 1 1 1 1 1 1 1 1 242-208 CH2

  29. 2.17 Karnaugh Map POS Minimization Ex1: Map and minimize the following std. POS expression on a Karnaugh map: (A+B+C)(A+B+C)(A+B+C)(A+B+C) 000 001 111 110 A+B 0 0 0 0 0 0 0 0 A+B Answer: (A+B)(A+B) 242-208 CH2

  30. POS Minimization (cont.) Ex2: Map and minimize the following POS expression on a Karnaugh map: (A+B)(A+B+C)(A+B+C) 000 001 010 011 A 0 0 0 0 0 0 0 0 Answer: A 242-208 CH2

  31. Karnaugh maps Simplification of POS Expressions (B+C+D)(A+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D) 0000 1000 0010 0110 1011 1001 1010 (B+D) (A+C+D) 0 0 0 (A+B) 0 0 0 0 Answer: (B+D)(A+B)(A+C+D) 242-208 CH2

  32. Converting Between POS and SOP Using Karnaugh Map (B+C+D)(A+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D) 0000 1000 0010 0110 1011 1001 1010 (B+D) AD BC (A+C+D) 0 0 0 1 1 0 0 0 1 1 1 AB (A+B) 1 1 1 1 0 0 0 0 0 0 0 0 Min POS: (B+D)(A+B)(A+C+D) Min SOP: AB+BC+AD 242-208 CH2

  33. Mapping Directly from a Truth Table A B C Out 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 x 1 1 x 1 Out = AB+BC 242-208 CH2

  34. 7-segment decoding Logic Digit D C B A a b c d e f g 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 2 0 0 1 0 1 1 0 1 1 0 1 3 0 0 1 1 1 1 1 1 0 0 1 4 0 1 0 0 0 1 1 0 0 1 1 5 0 1 0 1 1 0 1 1 0 1 1 6 0 1 1 0 1 0 1 1 1 1 1 7 0 1 1 1 1 1 1 0 0 0 0 8 1 0 0 0 1 1 1 1 1 1 1 9 1 0 0 1 1 1 1 1 0 1 1 10 1 0 1 0 x x x x x x x 11 1 0 1 1 x x x x x x x 12 1 1 0 0 x x x x x x x 13 1 1 0 1 x x x x x x x 14 1 1 1 0 x x x x x x x 15 1 1 1 1 x x x x x x x 242-208 CH2

  35. Karnaugh Map Minimization of the Segment Logic SOP for segment a: DC BA+DCBA+DCBA+ DCBA+DCBA+DCBA+DC BA+DCBA CA 1 1 1 CA B 1 1 1 D x x x x 1 x 1 x Minimum SOP expression: D+B+CA+CA 242-208 CH2

More Related