1 / 25

RBF siete

RBF siete. Prednášky FEI KASR 2005 Stefan Kozák. Vstupná vrstva. Nelineárna bázická funkcia. Line árna fcia výstupná vrstva. RBF a rchite k t úra. RBF siete a bázické funkcie. Formy výstupnej funkcie zo skrytej vrstvy f defin uje množinu bázických funkcií.

acton
Download Presentation

RBF siete

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RBF siete Prednášky FEI KASR 2005 Stefan Kozák

  2. Vstupná vrstva Nelineárna bázická funkcia Lineárna fcia výstupná vrstva . . . RBF architektúra

  3. RBF siete a bázické funkcie • Formy výstupnej funkcie zo skrytej vrstvy • f definuje množinu bázických funkcií

  4. Radial Basis Funkcie (RBF) • Štruktúra siete s RBF • Jedná skrytá vrstva • Aktivačná funkcia v skrytej vrstve je funkciou vzdialenosti medzi vstupným vektorom a vzorom Výstup Radialne báz. jednotky Vstupy

  5. Porovnanie sietí RBF – MLP : Viacvrstvový perceptrón RBF sieť Výstup Nelineárna aktiv. funkcia Nelineárna báz. funkcia Vstupné údaje Vstupné údaje RBF - iba jedná skryta vrstva MLP - viacero skrytých vrstiev

  6. Architektúra RBF siete Skrytá vrstva Vstupné údaje

  7. MLP versus RBF • Klasifikácia • MLP oddeľuje triedy hyperovinou • RBF oddeľuje jednotlivé triedy hyperguľami • Učenie • MLP distribuované učenie • RBF lokalizované učenie • RBF rýchle trénovanie • Structure • MLP má jednú alebo viac vrstiev • RBF má len jednú vrstvu • RBF vyžaduje oveľa viac neurónov v skrytej vrstve MLP X2 X1 X2 RBF X1

  8. Typické RBF používané v modelovaní a riadení • Hardy Multiquadratic • Inverse Multiquadratic • Gaussian

  9. Gaussian Basis Function (s=0.5,1.0,1.5)

  10. Nenatrénované vzorky Neznáma funkcia na aproximáciu y Trénovacie údaje x Aproximácia pomocou RBF

  11. Netrénované vzorky y x Výstup z RBF siete y = w1*f(x) + w2*f(x) + w3*f(x) + b

  12. Neural network RBF - príklad Problem – aproximačný pomocou RBF : - merania vstupov a výstupov - určenie centier a šírky RBF funkcií Príklad :Merané údaje (tri vstupy, dva výstupy (žiadané hodnoty). Určiť váhové parametre RBF siete ? vstupy výstupy

  13. x1x2x3 yout Gaussian neurons

  14. Neural network RBF riešenie Pokračovanie príkladu – updatovanie váh v sieti Výpočet výstupov zo siete W1, W2 W3, W4 … W19, W20

  15. Neural network RBF riešenie Učenie RBF siete z nameraných údajov: Pokračovanie príkladu : Vstup Výstup Kritérium

  16. Neural network RBF riešenie Učenie na základe meraných údajov Pred učením Po naučení

  17. RBF skrytá vrstva zložená z funkcií, ktoré majú svoje centra • Funkcia RBF v skrytej vrstve je Gausova funkcia • Výstup zo skrytej vrstvy je • Výstupná vrstva je lineárna funkcia

  18. Trénovanie RBF siete • Dve nezávislé etapy: • 1. vstupná vrstva • Výpočet centier RBF a centier zo I/O data. (E. g. K-means (EM algorithms) • Posuv údajov do 2. vrstvy • 2. výstupná vrstva: • Výpočet váhových koeficientov • Aplikácia metódy učenia. • Ako vypočítať váhy vo výstupnej vrstve ? • is a linear function (Least Mean Square (LMS)algorithm).

  19. Nastavovanie váh v RBF sieti - zovšeobecnenie • Kriteriálna funkcia pre nastavovanie váh RBF sieť je trénovana tak aby udatovaním váh sa minimalizoval rozdiel medzi výstupom zo siete a nameranými (cieľovými hodnotami) na základe vstup. údajov • Zmena váh sa realizuje podľa vzťahu kde je koef. rýchlosti učenia. je gradient . pričom . Ak je lineárna, potom Updatovanie váhpodobne ako u MLP Tkp cieľové hodnoty Okp výstup z RBF

  20. Summary of RBF Algoritmu • Step 1: Výpočet centierRBFa šíriekz I/O údajov. • Step 2: Výpočet výstupu z RBF (skrytá vrstva) • Step 3: updatovanie váh • kde • Step 4: Opakovanie krokov 2-3 pre každý „súbor“vstupnej množiny. • Step 5: Opakovanie krokov 2-4 podľa hodnoty krit. funkcie, podmienok ukončenia trénovania, alebo iných ukončovacích podmienok .

  21. RBF siete modelovanie dynamických procesov na základe I/O údajov

  22. Štruktúra siete

  23. Proces

More Related