450 likes | 578 Views
A l 3 ( r -i h ). l. 1- l 2 /2. - l. 1- l 2 /2. A l 2. -A l 2. A l 3 (1- r -i h ). 1. h. r. Measurements of CKM Elements and Unitarity Triangle. B. Golob, Belle Collaboration University of Ljubljana. Aim: constraints on CKM matrix consistency between data/SM. V ud V us V ub
E N D
Al3(r-ih) l 1-l2/2 -l 1-l2/2 Al2 -Al2 Al3(1-r-ih) 1 h r Measurements of CKM Elements and Unitarity Triangle B. Golob, Belle Collaboration University of Ljubljana Aim: constraints on CKM matrix consistency between data/SM Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb • Cabbibo angle • tree level B decays • oscillations • angles • overall constraints detailed insight from talks by K. Abe and Y. Pan (0,1) (0,0) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vus| BNL E865 PDG2002 f+(0) Vus PDGKe3 Braverage: (4.82 ± 0.06)% from K+(0) →p0(-) l+ne average w/ E865 |Vus|fromE865 designed for K+→ p+m+e- search 1 week dedicated Ke3 run 1998 Br(K+ →p0 e+ne ) = (5.17 ± 0.02 ± 0.09 ± 0.04)% Unitarity…?: |Vus|= 0.2272 ± 0.0028 |Vud|2 + |Vus|2 + |Vub|2 = 1 |Vud|direct=0.9740 ± 0.0005(SFT) |Vus|direct=0.2201 ± 0.0024 (Ke3,w/o E865) ± 0.0020 theoretical uncertainty (f+(0)); (E865,hep-ex/0305042) |Vus|unitarity = √(1 - |Vud|2direct) =0.2265 ± 0.0022 ~2 s discrepancy solved by E865? B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Vub Vcb |Vcb|,|Vub| From tree-level B decays Apex of unitarity triangle must lie within the band (independent of new physics); constrains the side Rb Rb B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vcb|,|Vub| • exclusive • mainlyB→ D*ln (higher stat., • lower th. uncertainty); • also B→ Dln as check • inclusive • total s.l. width + moments • of differential distributions • From tree-level • (s.l.) B decays • Vcb • Vub W l n B Xc,u • exclusive • B → p,r,w,h ln; • HQS not helpful, high th. • uncertainty • inclusive • total s.l. b → ulnwidth; • limited phase space, larger • th. uncertainty than b → cln B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
q ln B(vB) D*(vD*) |Vcb|from exclusive decays Measurement of w distribution known kinematic factor form factor (Belle,PLB526, 247(02)) In the heavy quark limit: F(w)=x(w) x(1)=1 Extrapolation of dG/dw to w=1→F(1)|Vcb| Belle Z0 r2 and F(1)|Vcb| free parameters (I.Caprini et al., Nucl.Phys.B530,153(98)) U(4s) w B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vcb|from B → D*ln meas. error dominated by systematics: Z0: modeling of D** bckg U(4s):e(pslow) HFAG, winter’03 0.7M BB 11M BB 3M BB F(1) = 0.91 ± 0.04 |Vcb|=(41.9 ± 1.1 ± 1.8)x10-3 exp. F(1) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vcb|from inclusive decays Measurement of semileptonic width Gsl ~1% accuracy on |Vcb| Br(b → cln)/tb = Kth |Vcb|2 ~5% uncertainty on |Vcb| Operator Product Expansion: two parameters to O(1/mb2): l1(kin. energy of b); l2 (hyperfine int. energy); + mb= mB -L use to constrain/check theory corrections described by same parameters also for different moments of differential distributions X = El, Mh, Eg B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vcb|from inclusive decays L[GeV] several moments measured: l1[GeV2] <Eg>; <(Eg-<Eg>)2>; (Delphi,hep-ex/ 0210046(02), M.Calvi,Delphi, CKM Workshop, Durham’03) Delphi Cleo 1st,2nd,3rd lepton energy and hadronic mass moments; Eg[GeV] Eg from b → sg; (Cleo,PRL87, 251807(01); Cleo,PRL87, 251808,(01); Cleo,PRD67, 072001(03)) Cleo also moments of - hadronic mass spectrum - lepton energy from B → Xln; BaBar:moments of hadronic mass; p* dependence stronger than expected, analysis ongoing; B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
exp.: Gsl,L, l1,r1,r2 |Vcb|from inclusive decays HFAG Winter’03 average using world average Gsl = (0.434±0.008)10-10 MeV LEP: Br(B → Xln)=(10.65±0.23)% (advantage: full lepton spectrum) (some measurements not yet included) and combining different measured moments, also 3rd (sensitive to O(1/mb3), multiparameter fits): 2.2M BB 22M BB (C.W.Bauer et al.,PRD67,054012(03); M.Battaglia et al.,PLB556,41(03)) 82M BB |Vcb|= (41.4 ± 0.7 ± 0.6)x10-3 exp. th. th.: as, O(1/mb4) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vub|from exclusive decays B → wln M(p+p-p0); higher p*l Measurements of Br(B → Xuln); several measurements exist: BaBar, Belle, Cleo covering B → p±,p0,r±,r0,w,h ln lower p*l b → cln signal • similar as b → cln, • but inlimited interval • of q2 (Cleo, pln, rln) • p*l,El (Belle, wln), • (BaBar, rln) (C.Schwanda,Belle,CKM Workshop,Durham’03) • extrapolate to full range • (q2, El) using • different models; • fit to obtain yield • (use isospin relations to • connect p(r)±ln and p(r)0ln ) source of theoretical uncertainty B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vub|from exclusive decays q2[GeV2] q2[GeV2] (L.Gibbons,Cleo, CKM Workshop,Durham’03) average • Cleo:B → pln, • B → rln • 2D M(Xuln), DE fit • separately in • three q2 bins • lower syst. • from e(q2); • low probability • ISGW2; evaluation of th. uncertainty; difficult to combine; |Vub|= (3.42 ± 0.22 ± 0.55)x10-3 exp. th. B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vub|from inclusive decays (plots from M.Luke,CKM Workshop, Durham’03) q2 l n El p MX p B Semileptonic width b → uln sensitive to Vub in analog way as b → cln sensitive to Vcb; looser selection criteria q2 tighter selection criteria larger th.error • Variables separating • b → uln from b → cln: • lepton energy El; • hadronic inv. mass Mx; • leptonic inv. mass q2; MX2 Number of measurements using different individual variable or combination of those. B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
g p K S/B~0.3 D p B1 fully reconstructed (Mbc) B2 U(4s) l p Mbc[GeV] n S/B~2.5 Xu |Vub|from inclusive decays CMS: Mbc=√(Ebeam2-pB2) DE=EB-Ebeam • Hadronic invariant mass • at U(4s) need to • separate decay • products of two B’s; • large sample of B’s • → can use fully • reconstructed events; BaBar: B → D(*)+np e~0.4% selecting p*l>1 GeV on recoiling side; (D.del Re, BaBar, Moriond’03) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vub|from inclusive decays Belle:simulated annealing technique; minimize calculate MX on recoiling side; exchange particle signal ↔ tagging side fit with b→uln, b→cln, bckg.; extract Br(B→Xuln)/Br(B→Xln) b→cln subtracted (D.del Re, BaBar, Moriond’03) (A.Sugiyama,Belle,Moriond’03) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vub|from inclusive decays Inclusive Vub summary (HFAG winter’03): no average for B factories; all measurements suffer from th. uncertainty; lepton endpoint results: error from sh.f.,th.,sg completely correlated exp. syst. uncorrelated 9.5M BB 22M BB 86M BB |Vub|= (4.28 ± 0.17 ± 0.62)x10-3 82M BB exp. th. B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Vtd Vtd 1 1 Vts Vcb l l |Vtd|,|Vts| From Bd,s oscillations Apex of unitarity triangle must lie within the band; constrains the side Rt Rt B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Bd oscillations HFAG,winter’03 1.2% relative error on Dmd to extract |Vtd| FBd√BBd = 220±35MeV (LQCD) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Bs oscillations instead of Dms free parameter, fit A at fixed value of Dms → A(Dms); no oscillations: A=0; oscillations at given Dms: A=1 Dms excluded @95% C.L. where A(Dms)+1.645sA < 1 Amplitude method: (Aleph,CERN-EP-2002-16) Aleph: combination of 3 methods; -exclusive (Bs → Ds(*)p(a1,r)), -semi-inclusive (rec. Ds and lepton), -inclusive (semileptonic); sp/p ~12% sL~370mm increasing p and L resolution increasing stat. inclusively rec. D vtx.; pB using pmiss and pD; sA~exp(Dm2ss2t/2)! B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Bs oscillations HFAG, winter’03: average of amplitude measurements; data ± 1.645s data ± 1s next test of SM in CKM fits; Tevatron domain until LHC; 95% C.L. 14.4ps-1 B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
b → ccs b → ccd b → sss Angle sin2f1(b) …is one of the angles of UT… measured in B → J/Y Ks B → D+D- B → f Ks B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
average: -0.38±0.41; b → sss, penguin only w/ different phase, one suppressed by O(l2); th. clean, with increased stat. might reveal new phenomena sin2f1(b) HFAG, winter’03 1±0.07 precision measurement, limited by stat. (by factor of 2; ~50% more stat. already waiting) 88M BB 82M BB 84M BB 82M BB 89M BB 82M BB B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
b → uud Angle sin2f2(a) …is another angle of UT… …but more difficult to access than f1! measured in B → p+p- significant B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
sin2f2(a)fromB → pp sin2f2 “summary”: (H.Sagawa,FPCP’03) 2s lines Belle B → pp: (|P/T|=0.3, sin2f1) f2 d 78o ≤ f2 ≤ 152o @95%C.L. (independent of d) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Standard fit: use measured observables and th. parameters to constrain the region in (r,h) plane CKM fit (CKM Fitter group, http://ckmfitter/in2p3.fr) Inputs(some): Experimental |Vud|, |Vus|, |Vub|, |Vcb| eK, Dmd, Dms, sin2f1, mt,… Theoretical hB, fBd√BBd, x, BK,… Rfit approach: theoretical uncertainties ↔ constant likelihood Minimize and compute CL. nice plots B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
r h r h UT constraints (CKM Fitter group, http://ckmfitter/in2p3.fr) 90% C.L. contour all “knowledge” but sin2f1 (overlaid) including sin2f1 B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
how about sin2f2? constraint determines arcs through (r,h)=(0,0) and (1,0) with center and radius depending on f2; UT constraints f2=78o 95% C.L. consistent with other measurem. f2=118o f2=152o PDG values 2002 + Belle sin2f1 (H.Sagawa,FPCP’03) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Summary Vud:5x10-4 accuracy, theoretically limited, PIBETA Vus: unitarity OK, disagreement in Ke3 (E865), KLOE, NA48; Vcb:excl. limited by F(1), moments will improve th.ambig.; Vub:q2 dependence starting (Belle,Cleo); inclusive Mx, q2 will be improved (Ba/lle); th. ambiguities resolved -through tests of models (exclusive); -through moments measurements (b → sg); excl./incl. disagreement? Vtd,Vts:Dmd already very precise, also improvement on tB; Dms important constraint on UT, domain of D0, CDF; sin2f1: real precision measurement, NP could be seen by Ba/lle (e.g. fKs); sin2f2: just started, although complicated, will give important constraint on UT; B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
r h r h …to conclude Dms & Dmd Dms & Dmd |eK| |eK| |Vub/Vcb| |Vub/Vcb| |eK| |eK| ½ of current error on Vub, sin2f1 (400fb-1) same with current sin2f1 value from fKs and ½ error B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide Vud,Vus summary (Hardy,Towner, Eur.Phys.J.A15(2002)) PERKEO II Grenoble (E865,hep-ex/ 0305042) (H.Abele et al., PRL 88(2002)) (ALEPH,hep-ex/ 0211057) PIBETA PSI KLOE, NA48 (D.Pocanic, CKM Workshop, Durham,2003) experimental error + theor. uncertainty experimental error -nucl.b decays (1±5x10-4) limited by th. uncertainty; - important check expected from p b decays with ~1/2 error; - new measurement by E865 vs. average of older, systematics under better control? - new measurements coming; B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Vcb from B → D*ln (Aleph,PLB395,373(97)) backup slide • w • reconstruction • q2=(pl+pn)2 • pmiss (+ MC • corrections) • s(w)~0.10; …or q2=(pB-pD*)2 s(w)~0.03; also D** bckg. suppression (Z0) (U(4s)) (Belle,PLB526, 247(02)) Belle U(4s) • F(w) • parametrization; single • (slope) parameter r2 r2 and F(1)|Vcb| free parameters (I.Caprini et al., Nucl.Phys.B530,153(1998)) w B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Vcbfrom D*ln by DELPHI backup slide Br(B0→ D*+l-n) = (4.70 ± 0.13 ± 0.34)% Syst. error dominated by D** w distribution modeling (± 5.1% on Vcb) Two narrow states, D1 & D2* (1+,2+) well established Br(B → D2*ln)/Br(B → D1ln) < 0.6 @95% CL - agreement with HQET when O(1/mc) corrections taken into account; - use such model for form factors and vary relevant parameters in the range consistent with experimental results; - syst. error is the max. difference from central value when F(1)Vcb measurement repeated for each parameter variation; (LEP,CDF,SLD,CERN-EP/2001-050) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Moments from BaBar backup slide <MX2-MD2> [GeV2] l1,L free due to the fact <MX2-MD2> ≥ fD**(MD**2-MD2)+ +fD*(MD*2-MD2)+ +fD(MD2-MD2) ?? excited state production saturated by D** ?? (M.Luke,CKM Workshop,Durham’03) p*[GeV] predicted dependence with l1,L as measured at p*=1.5 GeV theoretical error similar to experimental (N.Uraltsev,CKM Workshop,Durham’03) new results expected B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
g p K D p B1 fully reconstructed (Mbc) B2 U(4s) l p n X backup slide Vcb inclusive from Belle fully reconstructed B: B → D(*)p±, D(*)r±, D(*)a1±; D0 → Kp, K3p, Kpp0, Ks2p; D± → K2p CMS: Mbc=√(Ebeam2-pB2) DE=EB-Ebeam (Belle,DPF’03) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide Vcb inclusive from Belle Lepton spectrum on semileptonic side: (p*>0.6 GeV, extrap. to full interval) individual Br (B0,B±,e,m) measured Br(B → Xln)= (11.19±0.20±0.31)% stat. syst. (PID e, extrap.) (Belle,DPF’03) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Vub exclusive from BaBar backup slide (L.H.Wilden,K.R.Schubert,BaBar,CKM Workshop,Durham’03) • B → p±,p0,r±,r0,w en; 50fb-1; • two El regions: 2-2.3 GeV (b →cln bckg.), 2.3-2.7 GeV (continuum • bckg.); • |cosqBY|<1.1, Y=r+l, rejects wrong comb.; • continuum suppression (NN); • isospin relations: G(B0 → r-e+n)=2G(B+ →r0e+n), G(B0 → p-e+n)=2G(B+ →p0e+n) • quark model relation: G(B+ →r0e+n)= G(B+ →we+n) • fit DE=Ehad+El +pmiss-Ebeam and Mhad=m(pp(p)) (only DE for p modes) • 9 parameters: Br(B → r/wln), Br(B → pln), • b →uln feeddown (norm. in two El regions) • inclusive (parton level calc. with param. from B → Xsg) + expected reson. • b →cln (norm. in each channel) • extrapolate to entire El using 5 different form factors (LQCD, sum • rules, quark models, HQET (relates B and D semil. modes)) Br(B → r-e+n)=(3.29±0.42±0.47±0.55)10-4 stat. syst. th. largest single contrib. -feed-down modeling; -detector simul. (n recon.) full spread of central values for diff. form f. B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
Vub from inclusive decays backup slide q2 l n El p MX p B kin. limit b → cln (plot M.Luke,CKM Workshop, Durham’03) Semileptonic width b → uln sensitive to Vub in analog way as b → cln sensitive to Vcb; ~80% of b → uln cuts larger th. uncertainty parton level • Variables separating • b → uln from b → cln: • lepton energy El; • hadronic inv. mass Mx; • leptonic inv. mass q2; • Number of measurements using • different individual variable • or combination of those. MX2[GeV2] including Fermi motion (“shape function” - model) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
|Vub| = (4.11 ± 0.34 ± 0.44 ± 0.23 ± 0.24)x10-3 |Vub| = (4.43 ± 0.29 ± 0.50 ± 0.25 ± 0.35)x10-3 |Vub| = (4.26 ± 0.28 ± 0.48 ± 0.24 ± 0.34)x10-3 exp. fu th. sg Cleo (rescaled) BaBar Belle is shape function really same stat.+syst. above formula shape function backup slide Vub from lepton energy from Br to Vub: (N.Uraltsev et al., CKM Workshop, CERN’02) • to extrapolate partial Br in limited momentum range to full range → needb → uln model: parton level convoluted with shape function Fermi motion); (F.De Fazio,M.Neubert, JHEP06,017(99))
(A.Sugiyama, Belle, Moriond’03) Belle hadronic mass and q2 backup slide minimization by exchanging particles (50 times); different initial (random) W (10 times); finally require W small enough; reconstruct MX and q2; signal region: q2>7 GeV2, MX<1.5 GeV; • lepton selection • n reconstruction • pseudo reconstruction of B • reconstruction of MX and q2 from MC: multidimensional p.d.f. for correct and wrong comb. composed of pB*, EB*, M2miss,… check of annealing quality B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide Vcb,Vub summary th.error. F(1), in future LQCD? Vcb= (42.6 ± 1.2 ± 1.9)x10-3 D*ln exp. th. Vcb= (41.4 ± 0.7 ± 0.6)x10-3 inclusive exp. th. exp. error will be reduced soon (moments), 1/mb4 Vub= (3.42 ± 0.22 ± 0.55)x10-3 exclusive exp. th. need official averaging procedure, test models exp. th. Vub= (4.28 ± 0.17 ± 0.62)x10-3 lepton endpoint more precise b → sg different methods – th. consistency B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide B oscillations summary Summary: Ba/lle:300fb-1s ~0.04% tB limiting factor; (simultaneous fit); Dmd= 0.502 (1 ± 0.012) ps-1 next test of SM in CKM fits; Tevatron domain until LHC; e.g. D0 5s sign. w/ 2fb-1 @Dms ~ 17ps-1; CDF needs O(103) Bs → Ds(*)np for same; Dms< 14.4 ps-1 @95% C.L. FBd√BBd ~ ±15% in CKM fits FBs√BBs ~ ±15% x ~ ± 6% (V.Jain,D0,FPCP’03) ~450 B → D0mX/pb-1 → ~40 Bs → DsmX/pb-1 B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide Vtd,Vts From Bd,s oscillations Rt can be constrained using Dmd largest uncertainty measured or usingDmd/Dms measurement source of th. uncertainty B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
(3.4s) CP in B → pp (2.2s) direct CP in B → pp direct CP sin2f2(a) backup slide Interpretation: tree + tree level strong phase diff. P-T weak phase (changes sign) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
sin2f2(a) backup slide f2eff depends on d, f3, f2 and |P/T| p =f1 +f2 +f3 →f2eff depends on d, f1, f2 and |P/T| penguin amplitudes B → K+p- and B → p+p- are equal →limits on |P/T| (~0.3); considering all interval of dvalues one can obtain interval of f2 values; isospin relations can be used to constrain d (or better to say f2 -f2eff); B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide UT constraints Comparison of Vub values theoretical uncertainty: constant C.L. exclusive/inclusive consistentcy Vubexcl – Vublepton= 0.86 ± 0.28 ± ??? exp. uncorr.th. (H.Lacker,FPCP’03) B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen
backup slide Rfit (A.Hoecker et al.,Eur.Phys.J.C21,225(01)) Th. quantities – “reasonable range”, not statistically distributed, frequentist approach; th. predictions, depending on model parameters ymod knowledge on th. para. allowed range of th.param. uniform Ltheo ≠ uniform p.d.f. minimization: CL built from MC simulations; generation of pseudo exp. with optimal ymod using Lexp; B. Golob, University of Ljubljana Physics in Collision 2003, Zeuthen