470 likes | 728 Views
Model Hierarchies for Surface Diffusion. Martin Burger. Johannes Kepler University Linz SFB Numerical-Symbolic-Geometric Scientific Computing Radon Institute for Computational & Applied Mathematics. Outline. Introduction Modelling Stages: Atomistic and continuum
E N D
Model Hierarchies for Surface Diffusion Martin Burger Johannes Kepler University Linz SFB Numerical-Symbolic-Geometric Scientific Computing Radon Institute for Computational & Applied Mathematics
Outline • Introduction • Modelling Stages: Atomistic and continuum • Small Slopes: Coherent coarse-graining of BCF Joint work with Axel Voigt Surface Diffusion Wien, Feb 2006
Introduction • Surface diffusionprocesses appear in various materials science applications, in particular in the (self-assembled) growth of nanostructures • Schematic description: particles are deposited on a surface and become adsorbed (adatoms). They diffuse around the surface and can be bound to the surface. Vice versa, unbinding and desorption happens. Surface Diffusion Wien, Feb 2006
Growth Mechanisms • Various fundamentalsurface growth mechanismscan determine the dynamics, most important: • Attachment / Detachment of atoms to / from surfaces / steps • Diffusionof adatoms on surfaces / along steps, over steps Surface Diffusion Wien, Feb 2006
Atomistic Models on (Nano-)Surfaces • From Caflisch et. Al. 1999 Surface Diffusion Wien, Feb 2006
Growth Mechanisms • Other effects influencing dynamics: • Anisotropy • Bulk diffusion of atoms (phase separation) • Elastic Relaxationin the bulk • Surface Stresses • Effects induced by electromagnetic forces Surface Diffusion Wien, Feb 2006
Applications: Nanostructures • SiGe/Si Quantum Dots • Bauer et. al. 99 Surface Diffusion Wien, Feb 2006
Applications: Nanostructures • SiGe/Si Quantum Dots Surface Diffusion Wien, Feb 2006
Applications: Nano / Micro • Electromigration of voids in electrical circuits Nix et. Al. 92 Surface Diffusion Wien, Feb 2006
Applications: Nano / Micro • Butterfly shape transition in Ni-based superalloys Colin et. Al. 98 Surface Diffusion Wien, Feb 2006
Applications: Macro • Formation of Basalt Columns: Giant‘s Causeway Panska Skala (Northern Ireland) (Czech Republic) See: http://physics.peter-kohlert.de/grinfeld.html Surface Diffusion Wien, Feb 2006
Atomistic Models on (Nano-)Surfaces • Standard Description (e.g. Pimpinelli-Villain): • (Free) Atoms hop on surfaces • Coupled with attachment-detachment kinetics for the surface atoms on a crystal lattice • Hopping and binding parameters obtained from quantum energy calculations Surface Diffusion Wien, Feb 2006
Need for Continuum Models • Atomistic simulations (DFT -> MD -> KMC) limited to small / medium scale systems • Continuum models for surfaces easy to couple with large scale models Surface Diffusion Wien, Feb 2006
Continuum Surface Diffusion • Simple continuum model for surface diffusion in the isotropic case: Normal motion of the surface by minus surfaceLaplacian of mean curvature • Can be derived as limit of Cahn-Hilliard model with degenerate diffusivity • Physical conditions for validity difficult to verify Surface Diffusion Wien, Feb 2006
Continuum Surface Diffusion • Simple continuum model for surface diffusion in the isotropic case: Normal motion of the surface by minus surfaceLaplacian of mean curvature • Can be derived as limit of Cahn-Hilliard model with degenerate diffusivity • Physical conditions for validity difficult to verify Surface Diffusion Wien, Feb 2006
Surface Diffusion • Growth of a surface G with velocity • F ... Deposition flux, Ds .. Diffusion coefficient • W ... Atomic volume, s ... Surface density • k ... Boltzmann constant, T ... Temperature • n ... Unit outer normal, m ... chemical potential Surface Diffusion Wien, Feb 2006
Chemical Potential • Chemical potentialm is the change of energy when adding / removing single atoms • In a continuum model, the chemical potential can be represented as a surface gradient of the energy (obtained as the variation of total energy with respect to the surface) • For surfaces represented by a graph, the chemical potential is the functional derivative of the energy Surface Diffusion Wien, Feb 2006
Surface Energy • Surface energy is given by • Standard model for anisotropic surface free energy Surface Diffusion Wien, Feb 2006
Faceting of Thin Films Anisotropic Surface Diffusion mb-Hausser-Stöcker-Voigt-05 Surface Diffusion Wien, Feb 2006
Faceting of Crystals • Anisotropic surface diffusion Surface Diffusion Wien, Feb 2006
Disadvantages of Continuum Models • Parameters (anisotropy, diffusion coefficients, ..) not known at continuum level • Relation to atomistic models not obvious • Several effects not included in standard continuum models: Ehrlich-Schwoebel barriers, nucleation, adatom diffusion, step interaction .. Surface Diffusion Wien, Feb 2006
Small Slope Approximations • Large distance between steps in z-direction • Diffusion of adatoms mainly in (x,y)-plane • Introduce intermediate model step: continuous in (x,y)-direction, discrete in z-direction Surface Diffusion Wien, Feb 2006
Step Interaction Models • To understand continuum limit, start with simple 1D models • Steps are described by their position Xi and their sign si (+1 for up or -1 for down) • Height of a step equals atomic distance a • Step height function Surface Diffusion Wien, Feb 2006
Step Interaction Models • Energy models for step interaction, e.g. nearest neighbour only • Scaling of height to maximal value 1, relative scale b between x and z, monotone steps Surface Diffusion Wien, Feb 2006
Step Interaction Models • Simplest dynamics by direct step interaction • Dissipative evolution for X Surface Diffusion Wien, Feb 2006
Continuum Limit • Introduce piecewise linear function wN on [0,1] with values Xk at z=k/N • Energy • Evolution Surface Diffusion Wien, Feb 2006
Continuum Height Function • Function w is inverse of height function u • Continuum equation by change of variables • Transport equation in the limit, gradient flow in the Wasserstein metric of probability measures (u equals distribution function) Surface Diffusion Wien, Feb 2006
Continuum Height Function • Transport equation in the limit, gradient flow in the Wasserstein metric of probability measures (u equals distribution function) • Rigorous convergence to continuum: standard numerical analysis problem • Max / Min of the height function do not change (obvious for discrete, maximum principle for continuum). Large flat areas remain flat Surface Diffusion Wien, Feb 2006
Non-monotone Step Trains • Treatment with inverse function not possible • Models can still be formulated as metric gradient flow on manifolds of measures • Manifold defined by structure of the initial value (number of hills and valleys) Surface Diffusion Wien, Feb 2006
BCF Models • In practice, more interesting class are BCF-type models(Burton-Cabrera-Frank 54) • Micro-scale simulations by level set methods etc (Caflisch et. al. 1999-2003) • Simplest BCF-model Surface Diffusion Wien, Feb 2006
Chemical Potential • Chemical potential is the difference between adatom density and equilibrium density • From equilibrium boundary conditions for adatoms • From adatom diffusion equation (stationary) Surface Diffusion Wien, Feb 2006
Continuum Limit • Two additional spatial derivatives lead to formal 4-th order limit (Pimpinelli-Villain 97, Krug 2004, Krug-Tonchev-Stoyanov-Pimpinelli 2005) • 4-th order equations destroy various properties of the microscale model (flat regions stay never flat, global max / min not conserved ..) • Is this formal limit correct ? Surface Diffusion Wien, Feb 2006
Continuum Limit • Formal 4-th order limit Surface Diffusion Wien, Feb 2006
Gradient Flow Formulation • Reformulate BCF-model as dissipative flow • Analogous as above, we only need to change metric • P appropriate projection operator Surface Diffusion Wien, Feb 2006
Gradient Flow Structure • Time-discrete formulation • Minimization over manifold for suitable deformation T Surface Diffusion Wien, Feb 2006
Continuum Limit • Manifold constraint for continuous time for a velocity V • Modified continuum equations Surface Diffusion Wien, Feb 2006
Continuum Limit • 4th order vs. modified 4th order Surface Diffusion Wien, Feb 2006
Example: adatoms • Explicit model for surface diffusion including adatoms Fried-Gurtin 2004, mb 2006 • Adatom densityd, chemical potentialm, normal velocity V, tangential velocityv, mean curvaturek, bulk densityr • Kinetic coefficient b, diffusion coefficient L, deposition term r Surface Diffusion Wien, Feb 2006
Surface Free Energy • Surface free energy y is a function of the adatom density • Chemical potential is the free energy variation • Surface energy: Surface Diffusion Wien, Feb 2006
Numerical Simulation - Surfaces Surface Diffusion Wien, Feb 2006
Outlook • Limiting procedure analogous for more complicated and realistic BCF-models, various effects incorporated in continuum. Direct relation of parameters to BCF models • Relation of parameters from BCF to atomistic models • Possibility for multiscale schemes: continuum simulation of surface evolution, local atomistic computations of parameters Surface Diffusion Wien, Feb 2006
Download and Contact • Papers and Talks: www.indmath.uni-linz.ac.at/people/burger • e-mail: martin.burger@jku.at Surface Diffusion Wien, Feb 2006