510 likes | 682 Views
Collective diffusion of the interacting surface gas. M agdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences. Random walk. Diffusion coefficient D. Collective diffusion. + mass conservation. local density. Equilibrium distribution. c – microstate. Local density.
E N D
Collective diffusion ofthe interactingsurface gas MagdalenaZałuska-Kotur Institute of Physics, Polish Academy of Sciences
Random walk Diffusion coefficientD
Collective diffusion + mass conservation local density
Equilibrium distribution c – microstate Local density The model –noninteractinglattice gas
Noninteracting system single particle result
Single particlediffusion – noninteracting gas. for small k Do=Wa2
Interacting particles –2D system with repulsive interactions J’=3/4J Square lattice
Questions • How diffusion depends on interactions? • How minima of the density-diffusion plot are related to the phase diagram? • Where are phase transition points? • Are there some other characteristic points?
Example - hexagonal lattice - repulsion kT=0.25J kT=0.5J kT=J
J’=2J Attraction J<0 T=0.89Tc Tc=1.8|J|/k J’=J J’=0 J’=J J>0 J’=2J Repulsion J=0
Simulation methods • Harmonic density perturbation • Step profile decay
kT=0.25J kT=0.5J kT=J
Profile evolution Boltzmann –Matano method
The model Equilibrium distribution c – microstate Detailed balance condition
Possible approaches - QCA Hierarchy of equations
X Analysis of microscopic equations. Local density X L - lattice sites + periodic boundary conditions
For N=2 when reference particle jumps =1 otherwise Fourier transformation of master equation.
Eigenvalue of matrix M Approximation: Eigenvalue Limit
one interaction constant J x - number of bonds Approximate eigenvector for interacting gas
( ) Definition of transition rates in 1D system Possible transitions
Diffusion coefficient of 1D system Grand canonical regime Low temperature approximation
Diffusion coefficient - repulsive - QCA p=2,10,100
Diffusion coefficient - attractive interactions p=0.5,0.3,0.1
Diffusion coefficient - attractive QCA p=0.5,0.3,0.1
Eigenvector for random state Initial configuration
Repulsive far from equilibrium case θ ν p=100 θ
J’ J 2x2 ordering –definition of transitionrates M. A. Załuska-Kotur Z.W.Gortel – to be published
Equilibrium probability strong repulsion Diagonal matrix
* * Components of eigenvector Primary configurations: Secondary configurations (average of neighbouring primary ones):
Result Upper line: Lower line:
J’=3/4J Ordered phase
Summary • New approach to the collective diffusion problem, based on many-body function description– analytic theory. • Exact solution for noninteracting system. • Collective diffusion in 1D system with nearest neighbor attractive and repulsiveinteractions. • Diffusion coefficient in 2D lattice gas of2X2 ordered phase with repulsive forces. • Agrement with numerical results • Numerical approaches: step density profile evolution and harmonic density perturbation decay methods
Possible applications Analysis of • Far from equlibrium systems. • More complex interactions – long range • Surfaces with steps • Phase transitions
‘ J’=2J J=J’ J’=2J J=0
j x i Jak dyfuzja zależy od oddziaływań? Gaz cząstek na dwuwymiarowej sieci Szybkość przeskoków jednocząstkowych Einit,(i)- lokalna energia jednocząstkowa Ebar (ij) - energia cząstki w punkcie siodłowym
Analysis of microscopic equations. Local density
1D -- z=2 for small k Do=Wa2
= n1 –n2 Calculation for s clusters Y: Łukasz Badowski, M. A. Załuska-Kotur – to be published