1 / 80

Image Compression

Image Compression. Chapter 8. 1 Introduction and background. The problem: Reducing the amount of data required to represent a digital image. Compression is achieved by removing the data redundancies: Coding redundancy Interpixel redundancy Psychovisual redundancy.

adanne
Download Presentation

Image Compression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Image Compression Chapter 8

  2. 1 Introduction and background • The problem: Reducing the amount of data required to represent a digital image. • Compression is achieved by removing the data redundancies: • Coding redundancy • Interpixel redundancy • Psychovisual redundancy

  3. 1 Introduction and background (cont.) • Structral blocks of image compression system. • Encoder • Decoder • The compression ratio where n1 and n2denote the number of information carrying units (usually bits) in the original and encoded images respectively.

  4. 1 Introduction and background (cont.)

  5. 1 Introduction and background (cont.) function cr = imratio(f1,f2) %IMRATIO Computes the ratio of the bytes in two images / variables. %CR = IMRATIO( F1 , F2 ) returns the ratio of the number of bytes in %variables / files F1 and F2. IfF1 and F2 are an original and compressed %image, respectively, CR is the compression ratio. error(nargchk(2,2,nargin)); %check input arguments cr = bytes(f1) / bytes(f2); %compute the ratio The Function that finds the compression ratio between two images:

  6. 1 Introduction and background (cont.) (cont.) % return the number of bytes in input f. If f is a string, assume that it % is an image filename; if not, it is an image variable. function b = bytes(f) if ischar(f) info = dir(f); b = info.bytes; elseif isstruct(f) b = 0; fields = fieldnames(f); for k = 1:length(fields) b = b + bytes(f.(fields{k})); end else info = whos('f'); b = info.bytes; end

  7. 1 Introduction and background (cont.) >> r =imratio( (imread('bubbles25.jpg')), bubbles25.jpg') r = 0.9988 >> f = imread('bubbles.tif'); >> imwrite(f,'bubbles.jpg','jpg') >> r = imratio( (imread( 'bubbles.tif' ) ) , 'bubbles.jpg') r = 14.8578

  8. 1 Introduction and background (cont.) • Let denote the reconstructed image. • Two types of compression • Loseless compression: if • Loseless compression: if

  9. 1 Introduction and background (cont.) • In lossy compression the error between is defined by root mean square which is given by

  10. 1 Introduction and background (cont.) The M- Function that computes e(rms) and displays both e(x,y) and its histogram %COMPARE Computes and displays the error between two matrices. RMSE =COMPARE (F1 , F2, SCALE) returns the root-mean-square error between inputsF1 and F2, displays a histogram of the difference, and displays a scaleddifference image. When SCALE ,s omitted, a scale factor of 1 is used function rmse = compare(f1 , f2 , scale) error(nargchk(2,3,nargin)); if nargin < 3 scale = 1; end %compute the root mean square error e = double(f1) - double(f2); [m,n] = size(e); rmse = sqrt (sum(e(:) .^ 2 ) / (m*n));

  11. 1 Introduction and background (cont.) (cont.) %output error image & histogram if an error if rmse %form error histogram. emax= max(abs(e(:))); [h,x]=hist(e(:),emax); if length(h) >= 1 figure; bar(x,h,'k'); %scale teh error image symmetrically and display emax = emax / scale; e = mat2gray(e,[-emax,emax]); figure; imshow(e); end end

  12. 1 Introduction and background (cont.) >> r1 = imread('bubbles.tif'); >> r2 = imread('bubbles.jpg'); >> compare(r1, r2,1) >> In E:\matlab\toolbox\images\images\truesize.m (Resize1) at line 302 In E:\matlab\toolbox\images\images\truesize.m at line 40 In E:\matlab\toolbox\images\images\imshow.m at line 168 In E:\matlab\work\matlab_code\compare.m at line 32 ans = 1.5660

  13. 1 Introduction and background (cont.) Error histogram

  14. 1 Introduction and background (cont.) Error image

  15. 2 Coding redundancy • Let nk denotethe number of times that the kth gray level appears in the image and n denote the total number of pixels in the image. The associated probability for the kth gray level can be expressed as

  16. 2 Coding redundancy (cont.) • If the number of bits used to represent each value of rk isl(rk), then the average number of bits required to represent each pixel is • Thus the total number of bits required to code an M×N image is MNLavg

  17. 2 Coding redundancy (cont.) • When fixed variable length that is l(rk) =m then

  18. 2 Coding redundancy (cont.) • The average number of bits requred by Code 2 is

  19. 2 Coding redundancy (cont.) How few bits actually are needed to represent the gray levels of an image? Is there a minimum amount of data that is sufficient to describe completely an image without loss information? Information theory provides the mathematical framework to answer these questions.

  20. 2 Coding redundancy (cont.) Formulation of generated information Note that if P(E)=1 that is if the event always occurs then I(E)=0 and no information is attributed to it. No uncertainity associated with the event

  21. 2 Coding redundancy (cont.) Given a source of random events from the discrete set of possible events with associated probabilities The average information per source output, called the entropy, is

  22. 2 Coding redundancy (cont.) If we assume that the histogram based on gray levels is an estimate of the true probability distribution, the estimate of H can be expressed by

  23. 1 Introduction and background (cont.) function h = entropy(x,n) %ENTROPY computes a first-order estimate of the entropy of a matrix. %H = ENTROPY(X,N) returns the first-order estimate of matrix X with N %symbols in bits / symbol. The estimate assumes a statistically independent %source characterized by the relative frequency of occurence of the %elements in X error(nargchk(1,2,nargin)); if nargin < 2 n=256; end

  24. 1 Introduction and background (cont.) (cont) x = double(x); xh = hist(x(:),n); xh = xh/sum(xh(:)); % make mask to eliminate 0's since log2(0) = -inf i = find(xh); h = -sum(xh(i) .* log2(xh(i))); %compute entropy

  25. 1 Introduction and background (cont.) f = [119 123 168 119;123 119 168 168] ; f = [f; 119 119 107 119 ; 107 107 119 119] ; f = 119 123 168 119 123 119 168 168 119 119 107 119 107 107 119 119 p=hist(f(:),8) p = 3 8 2 0 0 0 0 3

  26. 1 Introduction and background (cont.) p =p/sum(p) p = Columns 1 through 7 0.1875 0.5000 0.1250 0 0 0 0 0.1875 H = entropy(f) h = 1.7806

  27. Huffman codes • Huffman codes are widely used and very effective technique for compressing data. • We consider the data to be a sequence of charecters.

  28. Huffman codes (cont.) Consider a binary charecter code wherein each charecter is represented by a unique binary string. Fixed-length code: a = 000, b = 001, c = 010, d = 011, e = 100, f = 101 variable-length code: a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

  29. Huffman codes (cont.) 100 100 1 0 1 0 55 a:45 a:45 14 86 0 1 0 0 1 58 28 25 30 14 0 0 1 0 1 0 1 0 1 1 a:45 b:13 d:16 d:16 e:9 f:5 c:12 b:13 14 d:16 c:12 0 1 f:5 e:9 Fixed-length code Variable-length code

  30. Huffman codes (cont.) Prefix code: Codes in which no codeword is also a prefix of some other codeword. Encoding for binary code: Example:Variable-length prefix code. a b c Decoding for binary code: Example:Variable-length prefix code.

  31. Constructing Huffman codes

  32. Constructing Huffman codes • Huffman’s algorithm assumes that Q is implemented as a binary min-heap. • Running time: • Line 2 : O(n) (uses BUILD-MIN-HEAP) • Line 3-8: O(n lg n) (the for loop is executed exactly n-1 times and each heap operation requires time O(lg n) )

  33. Constructing Huffman codes: Example f:5 e:9 c:12 b:13 d:16 a:45 c:12 b:13 d:16 a:45 14 1 0 0 f:5 e:9 14 d:16 25 a:45 0 1 0 0 1 f:5 e:9 c:12 b:13

  34. Constructing Huffman codes: Example a:45 25 30 0 1 0 1 c:12 b:13 d:16 14 0 1 f:5 e:9

  35. Constructing Huffman codes: Example 55 a:45 1 0 30 25 0 0 1 1 d:16 14 c:12 b:13 0 1 f:5 e:9

  36. Constructing Huffman codes: Example 100 1 0 55 a:45 1 0 30 25 0 1 0 1 d:16 14 c:12 b:13 1 0 f:5 e:9

  37. Huffman Codes function CODE = huffman(p) %check the input arguments for reasonableness error(nargchk(1,1,nargin)); if (ndims(p) ~= 2) | (min(size(p))>1)| ~isreal(p)|~isnumeric(p) error('P must be a real numeric vector'); end global CODE CODE = cell(length(p),1); if length (p) > 1 p=p /sum(p); s=reduce(p); makecode(s,[]); else CODE ={'1'}; end;

  38. Huffman Codes(cont.) %Create a Huffman source reduction tree in a MATLAB cell structure byperforming %source symbol reductions until there are only two reducedsymbols remaining function s = reduce(p); s= cell(length(p),1) for i=1:length(p) s{i}=i; end while numel(s) > 2 [p,i] = sort(p); p(2) = p(1) + p(2); p(1) = []; s = s(i); s{2} = {s{1},s{2}}; s(1) = []; end

  39. Huffman Codes(cont.) %Scan the nodes of a Huffman source reduction tree recursively to generate %the indicated variable length code words. function makecode(sc,codeword) global CODE if isa(sc,'cell') makecode(sc{1},[codeword 0]); makecode(sc{2},[codeword 1]); else CODE{sc} = char('0'+codeword); end

  40. Huffman Codes(cont.) >> p = [0.1875 0.5 0.125 0.1875]; >> c = huffman(p) c = '011' '1' '010' '00'

  41. Huffman Encoding >> f2 = uint8 ([2 3 4 2; 3 2 4 4; 2 2 1 2; 1 1 2 2]) f2 = 2 3 4 2 3 2 4 4 2 2 1 2 1 1 2 2 >> whos('f2') Name Size Bytes Class f2 4x4 16 uint8 array Grand total is 16 elements using 16 bytes

  42. Huffman Encoding(cont.) >> c = huffman(hist(double(f2(:)),4)) c = '011' '1' '010' '00' >> h1f2 = c(f2(:))' h1f2 = Columns 1 through 9 '1' '010' '1' '011' '010' '1' '1' '011' '00' Columns 10 through 16 '00' '011' '1' '1' '00' '1' '1'

  43. Huffman Encoding(cont.) >> whos('h1f2') Name Size Bytes Class h1f2 1x16 1018 cell array Grand total is 45 elements using 1018 bytes >> h2f2 = char (h1f2)' h2f2 = 1010011000011011 1 11 1001 0 0 10 1 1 >> whos('h2f2') Name Size Bytes Class h2f2 3x16 96 char array Grand total is 48 elements using 96 bytes

  44. Huffman Encoding(cont.) >> h2f2 = h2f2(:); >> h2f2(h2f2 == ' ') = []; >> whos('h2f2') Name Size Bytes Class h2f2 29x1 58 char array Grand total is 29 elements using 58 bytes

  45. Huffman Encoding(cont.) >> h3f2 = mat2huff(f2) h3f2 = size: [4 4] min: 32769 hist: [3 8 2 3] code: [43867 1944] >> whos('h3f2') Name Size Bytes Class h3f2 1x1 518 struct array Grand total is 13 elements using 518 bytes

  46. Huffman Encoding(cont.) >> hcode = h3f2.code; >> whos('hcode') Name Size Bytes Class hcode 1x2 4 uint16 array Grand total is 2 elements using 4 bytes >> dec2bin(double(hcode)) ans = 1010101101011011 0000011110011000

  47. Huffman Encoding(cont.) >> f = imread('Tracy.tif'); >> c=mat2huff(f); >> cr1 = imratio(f,c) cr1 = 1.2191 >> save SqueezeTracy c; >> cr2 = imratio ('Tracy.tif','SqueezeTracy.mat') cr2 = 1.2627

  48. Huffman Decoding function x = huff2mat(y) % HUFF2MAT decodes a Huffman encoded matrix if ~isstruct(y) | ~isfield(y,'min') | ~isfield(y,'size') | ~isfield(y,'hist') | ~isfield(y,'code') error('The input must be a structure as returned by MAT2HUFF'); end sz = double(y.size); m=sz(1); n= sz(2); xmin = double(y.min) - 32768; map = huffman(double(y.hist)); code = cellstr(char('','0','1')); link = [2; 0; 0]; left = [2 3]; found = 0; tofind = length(map);

  49. Huffman Encoding(cont.) (cont.) while length(left) & (found < tofind) look = find(strcmp(map, code {left(1)})); if look link(left(1)) = -look; left = left (2:end); found = found + 1; else len = length (code); link(left(1)) = len + 1; link = [link; 0; 0]; code{end + 1} = strcat(code{left(1)},'0'); code{end + 1} = strcat(code{left(1)},'1'); left = left(2:end); left = [left len + 1 len + 2]; end end x = unravel (y.code',link, m*n); %Decode using C 'unravel' x = x + xmin - 1; x = reshape(x,m,n);

  50. Huffman Encoding(cont.) (cont.) #include mex.h void unravel (unsigned short *hx, double *link, double *x, double xsz, int hxsz) { int i = 15, j=0, k=0, n=0; while (xsz - k) { if (*(link + n) > 0) { if((*(hx + j) >> i) & 0x0001) n = *(link + n); else n = *(link + n) - 1; if (i) i--; else {j++; i=15;} if( j > hxsz ) mexErrMsgTxt("OutOf code bits??"); }

More Related