1 / 6

LOGARITMI

LOGARITMI. Eksponenttiyhtälön 10 x = a ratkaisua sanotaan luvun a logaritmiksi Merkintä x = lga Huom. vain positiivisilla luvuilla on logaritmi. E.1. a) 10 x = 100 000 10 x = 10 5 x = 5 ”Luvun 100 000 logaritmi on 5” tai x = lg 100 000 x = 5.

Download Presentation

LOGARITMI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LOGARITMI Eksponenttiyhtälön 10x = a ratkaisua sanotaan luvun a logaritmiksi Merkintä x = lga Huom. vain positiivisilla luvuilla on logaritmi

  2. E.1. a) 10x = 100 000 10x = 105 x = 5 ”Luvun 100 000 logaritmi on 5” tai x = lg 100 000 x = 5

  3. b) 10x = 500 x = lg 500 x  2,70 ”Luvun 500 logaritmi on n. 2,70” E.2. Mikä on luku, jonka logaritmi on a) 4 b) -3 a) 104 = 10 000 b) 10-3 = 0,001

  4. Yhtälön 10x = a ratkaisu on siis lga Jolloin 10 lga = a (a > 0) E.3.Esitä luku 400 kymmenen potenssina 400 = 10lg400  102,60

  5. E.4. (t. 281) Kumpi luvuista 101310 ja 121210 on suurempi? 121210 = (10 lg12)1210 = 10 lg12  1210  10 1306 10 1310 > 10 1306 V: 101310 on suurempi

  6. Kirjan esimerkki 9

More Related