1 / 7

Boltzmann Transport Equation for Particle Transport

Boltzmann Transport Equation for Particle Transport. Distribution Function of Particles: f = f ( r , p , t ) --probability of particle occupation of momentum p at location r and time t. Equilibrium Distribution: f 0 , i.e. Fermi-Dirac for electrons, Bose-Einstein for phonons.

adem
Download Presentation

Boltzmann Transport Equation for Particle Transport

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Boltzmann Transport Equation for Particle Transport Distribution Function of Particles: f= f(r,p,t) --probability of particle occupation of momentum p at location rand time t Equilibrium Distribution: f0, i.e. Fermi-Dirac for electrons, Bose-Einstein for phonons Non-equilibrium, e.g. in a high electric field or temperature gradient: Relaxation Time Approximation t Relaxation time

  2. Energy Flux q v Energy flux in terms of particle flux carrying energy: dk q k f Vector Integrate over all the solid angle: Scalar Integrate over energy instead of momentum: Density of States: # of phonon modes per frequency range

  3. Continuum Case BTE Solution: Quasi-equilibrium Direction x is chosen to in the direction of q Energy Flux: Fourier Law of Heat Conduction: t(e) can be treated using Callaway method (Phys. Rev. 113, 1046) If v and t are independent of particle energy, e, then  Kinetic theory:

  4. At Small Length/Time Scale (L~l or t~t) Define phonon intensity: From BTE: 0 Equation of Phonon Radiative Transfer (EPRT) (Majumdar, JHT 115, 7): Heat flux: Acoustically Thin Limit (L<<l) and for T << qD Acoustically Thick Limit (L>>l)

  5. Outline • Macroscopic Thermal Transport Theory – Diffusion • -- Fourier’s Law • -- Diffusion Equation • Microscale Thermal Transport Theory – Particle Transport • -- Kinetic Theory of Gases • -- Electrons in Metals • -- Phonons in Insulators • -- Boltzmann Transport Theory •  Thermal Properties of Nanostructures • -- Thin Films and Superlattices • -- Nanowires and Nanotubes • -- Nano Electromechanical System

  6. Thin Film Thermal Conductivity Measurement 3w method (Cahill, Rev. Sci. Instrum. 61, 802) Metal line Thin Film L 2b V • I~ 1w • T ~ I2 ~ 2w • R ~ T ~ 2w • V~ IR ~3w I0 sin(wt) Substrate

  7. Silicon on Insulator (SOI) Ju and Goodson, APL 74, 3005 IBM SOI Chip Lines: BTE results Hot spots!

More Related