1 / 75

Programación Lineal y el Método Simplex. Programación No Lineal y los Teoremas de Lagrange y Khun-Tucker.

Programación Lineal y el Método Simplex. Programación No Lineal y los Teoremas de Lagrange y Khun-Tucker. Universidad de los Andes-CODENSA. Introducción.

adeola
Download Presentation

Programación Lineal y el Método Simplex. Programación No Lineal y los Teoremas de Lagrange y Khun-Tucker.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Programación Lineal y el Método Simplex.Programación No Lineal y los Teoremas de Lagrange y Khun-Tucker. Universidad de los Andes-CODENSA

  2. Introducción La programación matemática es una potente técnica de modelado usada en el proceso de toma de decisiones. Cuando se trata de resolver un problema de este tipo se deben tener en cuenta: • Identificar las posibles decisiones a tomar. • Determinar que decisiones resultan admisibles (Conjunto de restricciones). • Cálculo coste/beneficio de cada decisión (Función objetivo). Cualquier problema de programación requiere identificar cuatro componentes básicos: • El conjunto de datos • El conjunto de variables involucradas en el problema, junto con sus dominios respectivos de definición. • El conjunto de restricciones lineales del problema que definen el conjunto de soluciones admisibles. • La función lineal que debe ser optimizada.

  3. Problema del Transporte Cierto producto debe enviarse en determinadas cantidades u1,…,um, desde cada uno de m orígenes, y recibirse en cantidades v1,…,vn, en cada uno de los n destinos. Determine las cantidades xij, que deben enviarse desde el origen i al destino j, para conseguir minimizar el coste de envío. • Datos m: el número de orígenes n: el número de destinos ui: la cantidad que debe enviarse desde el origen i vj: la cantidad que debe ser recibida en el destino j cij: el coste de envío de una cantidad de producto desde el origen i al destino j • Variables xij: la cantidad que se envía desde el origen i al destino j. Se supone que las variables deben ser no negativas.

  4. (1) Restricciones: Las restricciones del problema son: (2) El primer conjunto de condiciones indica que la cantidad del producto que parte del origen i debe coincidir con la suma de las cantidades que parten de ese origen hasta los distintos destinos j=1,…,n. El segundo conjunto de condiciones asegura que el total recibido en el destino j debe corresponder a la suma de todas las cantidades que llegan a ese destino y parten de los distintos orígenes i=1,…,m. Los grupos de restricciones presentados en (1) y (2) muestran las restricciones de las variables y del problema, respectivamente. Función a maximizar En el problema de transporte nos interesa minimizar los costos de envío (suma de los costos de transporte de todas las unidades). Es decir, se debe minimizar: (3)

  5. Ejemplo – El Problema del Transporte: Considérese el problema de transporte mostrado en la figura 1, donde m=3orígenes, n=3 destinos, u1=2, u2=3, u3=4, v1=5, v2=2, v3=2. Figura 1. Esquema del problema de transporte. En este caso el sistema es

  6. Las tres primeras ecuaciones establecen la conservación del producto en los tres orígenes y las tres últimas igualdades, la conservación del producto en los tres destinos. Si se concretan los valores particulares: Para los costos de envío, el problema consiste en minimizar: El mínimo de la función objetivo es 14, que corresponde a:

  7. Problema de la Planificación de la Producción Un productor fabrica una pieza, cuya demanda varía en el tiempo, de acuerdo con la siguiente figura. Figura 2. Gráfico de la demanda en función del tiempo. El productor debe atender la demanda mensual siempre. En general cualquier problema de planificación admitirá diversas posibilidades que aseguren que la demanda es convenientemente atendida:

  8. Producción variable: El fabricante puede producir cada mes el número exacto de unidades que le solicitan. • Producción Constante: El fabricante que debe atender una demanda que cambia con el tiempo puede producir por encima de dicho nivel en periodos de baja demanda y almacenar la sobreproducción para los periodos de demanda mayor. Los problemas de esta naturaleza ilustran las dificultades que surgen cuando objetivos contrarios están presentes en e un sistema dado. • Datos n: el número de meses a considerar s0: la cantidad almacenada disponible al principio del periodo considerado dt: el número de unidades (demanda) que se solicita en el mes t smax: la capacidad máxima de almacenamiento at: el precio de venta en el mes t

  9. bt: el costo de producción en el mes t ct: el costo de almacenamiento en el mes t • Variables xt: el número de unidades producidas en el mes t st: el número de unidades almacenadas en el mes t • Restricciones La demanda dt en el mes t debe coincidir con el cambio en el almacenamiento , st-1–st, más la producción xt en el mes t; la capacidad de almacenamiento no puede excederse; y la demanda dt, almacenamiento st, y producción xt deben ser no negativas.

  10. Función a Optimizar Una posibilidad consiste en maximizar el ingreso después de descontar los costes de la variación de la producción y los inventarios. Otra posibilidad consiste en minimizar los costos de almacenamiento:

  11. Ejemplo – El Problema de la Planificación de la Producción: Considérese la función de demanda en función del tiempo mostrada en la siguiente tabla: Tabla 1. Demanda en función del tiempo. Supóngase que la cantidad almacenada inicialmente es s0=2. Entonces el sistema se transforma en:

  12. Donde el cero en la matriz de la derecha procede a restar la demanda para t=1 del almacenamiento inicial. Si se maximiza el beneficio después de descontar los costos y los inventarios, y se toma at=3, bt=1, ct=1, el problema de optimización se convierte en: Maximizar Sujeto a las restricciones ya mencionadas. Resolviendo este problema encontramos que el valor máximo es: Lo que implica ningún almacenamiento.

  13. Problema de la Dieta Se conocen los contenidos nutritivos de ciertos alimentos, sus precios y la cantidad mínima diaria de nutrientes aconsejada. El problema consiste en determinar la cantidad de cada alimento que debe comprarse para satisfacer los mínimos aconsejados y alcanzar un precio total mínimo. • Datos m: el número de nutrientes. n: el número de Alimentos. aij: la cantidad del nutriente i en una unidad del alimento j. bi: la cantidad mínima del nutriente i aconsejada. cj: el precio de una unidad del alimento j.

  14. Variables xj: la cantidad del alimento j que debe adquirirse. • Restricciones Como la cantidad total de un nutriente dado i es la suma de las cantidades de los nutrientes en todos los alimentos y las cantidades de alimentos deben ser no negativas, entonces tenemos: • Función a Minimizar En el problema de la dieta se esta interesado en minimizar el precio de la dieta: Minimizar Donde cj es el precio unitario del alimento j.

  15. Ejemplo – El Problema de la Dieta: Considere un caso con cinco nutrientes y con los mínimos aconsejados para los nutrientes digeribles (DN), proteínas digeribles (DP), calcio (Ca), y fósforo (Ph) dados en la siguiente tabla: Tabla 2. Contenidos nutritivos de cinco alimentos Las restricciones se convierten en

  16. Supóngase que los precios unitarios de los alimentos son: De este modo se tiene el siguiente PPL: Minimizar Sujeto a las restricciones ya mencionadas. Con la solución de este sistema se obtiene la solución

  17. Problema del Flujo en un a Red Supóngase una red de transporte (conducción hidráulica, ferrocarril, carreteras, etc.) a través de la cual se desea enviar un cierto material (aceite, grano, vehículos, mensajes, etc.) de un conjunto de nodos de la red, llamados nodos fuente, a un conjunto de puntos de destino, llamados nodos sumideros. Además de éstos, la red contiene nodos intermedios, donde no tienen lugar ni entradas ni salidas de material. Sea xijel flujo que va del nodo i al nodo j (positiva en la dirección ij ,y negativa en otro caso). • Datos g: el grafo g=(N,A) que describe la red de transporte, donde N es el conjunto de nudos, y A es el conjunto de conexiones. n: el número de nudos en la red. fi: el flujo entrante (positivo) o saliente (negativo) en el nudo i mij: la capacidad máxima de flujo en la conexión entre el nudo i y el j cij: el precio de mandar una unidad del bien desde el nudo i al nudo j.

  18. Variables xij: el flujo que va del nodo i al nodo j • Restricciones: Las restricciones del problema son: Imponiendo la condición de conservación del flujo en todos los nudos, y las restricciones sobre la capacidad de las líneas o conexiones, se obtienen las siguientes restricciones: Restricciones de conservación del flujo (4) Restricciones de capacidad de las líneas o conexiones (5) donde i<j evita la posible duplicación de restricciones. • Función a minimizar: El precio total es: (6) Así, debe minimizarse (6) bajo (4) y (5). Las redes de abastecimiento de agua, los sistemas de comunicaciones, y otros, conducen a problemas de redes de transporte como el descrito aquí.

  19. Ejemplo – El Problema de Flujo en Redes: Considérese el problema de flujo en la red de la figura 3 donde las flechas indican los valores positivos de las variables del flujo. Figura 3. Esquema del problema de transporte. En este caso el sistema es (7) Donde se supone que

  20. Supóngase además que . El problema de optimización es minimizar Sometido a (7). Mediante el software adecuado puede obtenerse la siguiente solución: Esta solución indica que existe un conjunto de infinitas soluciones, todas ellas proporcionando el mismo valor óptimo, Z=5.

  21. Problema de la Cartera de Valores Un inversor es propietario de participaciones de varios valores. Mas concretamente es dueño de bi participaciones de los valores bursátiles Ai, i=1,2,..m. Los precios actuales de estos valores son vi. Considérese que se pueden predecir los dividendos que se pagarán al final del año que comienza y los precios finales de los diferentes valores bursátiles, esto es, Ai pagará di y tendrá un nuevo precio wi. El objetivo es ajustar la cartera, es decir, el número de participaciones en cada valor, de modo que se maximicen los dividendos • Datos m: el número de valores bursátiles bi: el número actual de participaciones del valor bursátil i vi: el precio actual del valor i por participación di: el dividendo que se pagará al final del año en el valor bursátil i wi: el nuevo precio del valor bursátil i

  22. r: porcentaje mínimo r del valor actual de toda la cartera que no debe superarse en el ajuste s: porcentaje mínimo del valor total actual que no debe superarse por el valor futuro total de la cartera, para hacer frente a la inflación • Variables xi: el cambio en el número de participaciones del valor bursátil i. • Restricciones Se deben asegurar ciertas condiciones que debe satisfacer una cartera bien equilibrada: El número de participaciones debe ser no negativo Exigimos que el capital asociado a todo valor concreto, después del ajuste, represente al menos una cierta fracción r del capital total actual de la cartera

  23. El capital total de la cartera no debe cambiar en el ajuste pues se supone que no se invierte dinero adicional Para hacer frente a la inflación, el capital total en el futuro debe ser al menos un cierto porcentaje s mayor que el capital invertido actualmente: • Función a optimizar Nuestro objetivo es maximizar los dividendos La tarea se concreta al determinar el valor máximo de los dividendos sujeto a todas las restricciones anteriores.

  24. Ejemplo – El Problema de la Cartera de Valores: Se tienen participaciones de tres valores bursátiles, 75 de A, 100 de B y 35 de C, con precios 20, 20 y 100 dólares, respectivamente. Se dispone de la siguiente información: A no pagará dividendos y alcanzará una nueva cotización de 18 dólares, B pagará 3 dólares por participación y la nueva cotización será 23 dólares, y C pagará 5 dólares por participación con una nueva cotización de 102 dólares. Si se toman los porcentajes r como 25 y s, 0.30, todas las restricciones se escriben como:

  25. Después de varias simplificaciones , las restricciones anteriores se transforman en: La solución obtenida es:

  26. Problema de Distribución de Energía Los generadores de energía, así como las demandas de la misma se sitúan en una red energética. El objetivo de este problema consiste en decidir la energía a producir por cada generador de forma tal que se satisfagan las diferentes condiciones técnicas de la red y los generadores, así como las demandas, al mínimo coste. Cada línea de transmisión de una red de energía transmite energía de un bus a otro. La energía transmitida es proporcional a la diferencia de los ángulos de estos buses (de forma similar a que el agua que fluye en una tubería que conecta dos tanques es proporcional a la diferencia de alturas del agua en ambos). La constante de proporcionalidad tiene un nombre divertido ¨susceptibilidad¨. La potencia transmitida desde el bus i al j a través de la línea i-j es por tanto (8) donde Bijes la susceptibilidad de la línea i-j, y ylos ángulos de los buses i y j, respectivamente. Por razones físicas, la cantidad de energía transmitida a través de una línea tiene un límite. Este límite está relacionado con consideraciones térmicas o de estabilidad. Por tanto, una línea energética debe ser operada de forma tal que su límite de transmisión no sea excedido.

  27. Esta condición puede formularse como (9) donde es la capacidad de transmisión de la línea i-j. Debe notarse que la potencia transmitida es proporcional a la diferencia de ángulos y no, a un ángulo dado. Por tanto, puede fijarse el valor de un ángulo arbitrario a 0, y tomarlo como origen. Es decir, para un bus arbitrario k: (10) Una consecuencia que se deriva de esta posibilidad de fijar arbitrariamente un origen es que los ángulos son variables no restringidas en signo. La potencia generada por un generador es una magnitud positiva limitada inferiormente, debido a las condiciones de estabilidad (de forma similar a la de un automóvil, que no puede moverse a una velocidad inferior a un cierto límite), y superiormente, debido a límites térmicos (similarmente a la de un automóvil que no puede moverse a más de una cierta velocidad máxima). Las restricciones anteriores conducen a: (11) donde pies la potencia producida por el generador i, y y son constantes positivas que representan, respectivamente, el mínimo y el máximo de las potencias generadas por el generador i.

  28. En todo bus, la potencia que entra debe ser igual a la potencia que sale (ley de la conservación de la energía), que puede escribirse como (12) donde es el conjunto de buses conectados a través de las líneas al bus i y Di la demanda asociada al bus i. Como se ha indicado anteriormente, la potencia transmitida a través de toda línea es limitada, por tanto (13) • Datos n: el número de generadores. : la mínima energía de salida asociada al generador i. : la máxima energía de salida asociada al generador i. Bij: la susceptancia de la línea i-j. : la capacidad máxima de transmisión de la línea i-j. Ci: el coste de producir energía en el generador i. : el conjunto de buses conectados a través de líneas al bus i. Di: la demanda asociada al bus i.

  29. Variables pi: la energía producida por el generador i. : el ángulo del bus i. • Restricciones: Las restricciones de este problema son (14) • Función a minimizar: El objetivo es minimizar el precio total de la producción de potencia (15) donde Cies el precio de la producción del generador i, y n el número de generadores.

  30. Ejemplo – El Problema de Distribución de Energía: Considérese el sistema de la figura 4: Figura 4. Esquema del problema de Distribución de Energía. El generador del bus 1 produce un coste 6 y sus límites inferiores y superiores son, respectivamente, 0.15 y 0.6. El coste de producción del generador del bus 2 es 7 y sus límites de potencia son, respectivamente, 0.1 y 0.4. La línea 1-2 tiene una susceptancia 2.5 y un límite de transmisión máximo de 0.3, la línea 1-3 tiene una susceptancia de 3.5 y un límite de transmisión de 0.5, y, finalmente, la línea 2-3 tiene una susceptancia de 3.0 y un límite de transmisión de 0.4. Este sistema tiene una demanda simple localizada en el bus 3 con un valor de 0.85. Se considera un periodo de una hora, y se toma como origen el bus 3.

  31. Este problema puede escribirse como: minimizar sometido a Las variables de optimización son p1, p2, y . La solución de este problema es: La solución óptima requiere que el generador 1 produzca 0.565 y el generador 2 produzca 0.285.

  32. Introducción a la Programación Lineal • Problema de Programación Lineal (PPL): La forma mas general de un problema de programación lineal consiste en minimizar o maximizar: Sujeto a: donde p ,q y m son enteros positivos tales que . • Solución Factible: Un punto que satisface todas las restricciones se denomina solución factible. El conjunto de todas esas soluciones es la región de factibilidad.

  33. Solución Óptima: Un punto factible tal que para cualquier otro punto factible X se denomina una solución óptima del problema. Típicamente n es mucho mayor que m. Lo que distingue a un PPL de otros problemas de optimización es que todas las funciones que aparecen son lineales. En un PPL la región factible es un Politopo o un Poliedro. El objetivo de los problemas de optimización es encontrar un óptimo global. Sin embargo, las condiciones de optimalidad garantizan por lo general óptimos locales. Sin embargo, los PPL presentan propiedades que hacen posible garantizar el óptimo global: • Si la región factible esta acotada, el problema siempre tiene una solución (condición suficiente pero no necesaria). • El óptimo de un PPL es siempre un óptimo global. • Si x e y son óptimos de un PPL, entonces cualquier combinación lineal de ellos es también un óptimo. Nótese que una combinación lineal convexa de óptimos no cambia el valor de la función objetivo. • La solución óptima se alcanza siempre, al menos, en un punto extremo de la región factible.

  34. Ejemplo – Solución Única: Maximizar Sometido a tiene por solución única Z=12, que se alcanza en el punto P=(3,3) Figura 5. Ejemplo Solución Única.

  35. Ejemplo – Solución Múltiple: Si la función objetivo del problema anterior se reemplaza por: el problema tiene múltiples soluciones Figura 6. Ejemplo Solución Múltiple. En efecto, cualquier punto del segmento con extremos en los puntos (2; 4)T y (3; 3)T da la solución óptima del problema (Z = 6).

  36. Ejemplo – Solución No Acotada: Maximizar Sometido a tiene solución no acotada Figura 7. Ejemplo No Acotada.

  37. Ejemplo – Solución No Factible: Maximizar Sometido a No tiene solución factible porque la nueva restricción no es compatible con las anteriores.

  38. Problema en la Forma Estándar Un PPL definido en la forma: Minimizar Sometido a Se dice que está en forma estándar. Ello implica: • La función objetivo debe minimizarse. • las restricciones deben ser de igualdad. • El vector debe ser no negativo. • Las variables x deben ser no-negativas. Cualquier problema puede ponerse en forma estándar.

  39. Paso a un Problema de Minimización: Un problema de maximización puede convertirse en uno de minimización cambiando el signo de la función objetivo. El problema: Maximizar es equivalente al problema Minimizar sometidos ambos a las mismas restricciones. • Paso a Variables No Negativas: El conjunto de r variables no restringidas puede escribirse en función de otro conjunto de r + 1 variables no negativas: De esta forma se añade una variable en vez del método usual de añadir r nuevas variables. • Paso a Restricciones de Igualdad: Se puede conseguir usando variables de holgura:

  40. La desigualdad: con , equivale a la igualdad • La Desigualdad: con , equivale a la igualdad

  41. Ejemplos – Transformación a la Forma Estándar: • Maximizar sometido a Este problema en la forma estándar es Minimizar sometido a • Maximizar sometido a

  42. Este problema en la forma estándar es Minimizar sometido a

  43. El Método Simplex Sea el PPL: Minimizar Sujeto a Donde es una matriz de costos y A es una matriz de m x n. El método simplex (MS) consta de dos etapas: • Etapa de Iniciación • El conjunto inicial de restricciones se transforma en otro equivalente de igualdades, asociadas a una solución básica. • Los valores de las variables básicas se transforman en no negativos (se obtiene una solución básica factible). Esta etapa se llama reguladora.

  44. Etapa de Iteraciones Estándar En esta etapa los coeficientes de la función de costo se transforman en no positivos y el valor de la función de costo se mejora iterativamente, hasta obtener la solución óptima, se detecta solución no factible, o solución no acotada. En este proceso iterativo se obtienen diferentes soluciones factibles. Para este fin se utiliza la llamada transformación elemental de pivotaje. Fase de Iniciación:Una de las peculiaridades del SM consiste en incorporar una nueva variable Z, igual a la función objetivo del problema, y la restricción asociada Las restricciones son Y la función objetivo Donde (B N) es una partición de la matriz A, y XB y XN definen otra partición de x, en variables básicas y no básicas, respectivamente.

  45. Usando la ecuación de restricciones podemos obtener donde Ahora, de la ecuación de la función objetivo y la anterior ecuación obtenemos donde Para obtener

  46. El MS comienza con el conjunto de restricciones Donde es una partición del conjunto de variables . Las matrices se obtienen resolviendo las restricciones en xB donde son los coeficientes de costo asociados a xB y xN, respectivamente. Podemos entonces obtener un nuevo conjunto equivalente de restricciones con la misma estructura donde t se refiere al número de la iteración y t=0 es la iteración inicial.

  47. Programación No Lineal El problema más general de programación no lineal (PPNL), puede plantearse como: Minimizar Sujeto a En forma compacta el modelo anterior puede escribirse: Minimizar Sujeto a

  48. Donde es el vector de las variables de decisión, es la función objetivo, y y , donde y son las restricciones de desigualdad y de igualdad, respectivamente. La figura 8a muestra que el mínimo del problema se alcanza en el conjunto de puntos en los que la tangente es horizontal. Figura 8. Mínimos Locales y Globales. Sin embargo, si se busca el mínimo de la función: en , se encuentra uno con dificultades, pues no tiene puntos con derivada nula. Sin embargo, el hecho de que f tienda a cero cuando x tiende a ±∞ y que tome valores negativos, indica que f debe alcanzar su mínimo en algún lugar.

  49. Un análisis más profundo de f revela que el mínimo se alcanza en , pero f no es diferenciable en este punto. Este simple ejemplo muestra que se debe tener especial cuidado cuando las funciones que intervienen no son diferenciables. Figura 9. Grafica de la función . Hay además otro problema igualmente relevante, referente a los problemas no lineales diferenciables. Para ilustrarlo, se considera la función objetivo siguiente Figura 10. Grafica de la función .

  50. Esta función es diferenciable en todo , pero tiene un conjunto infinito de puntos con tangente horizontal (puntos en los que f´(x) = 0). Estos puntos reciben el nombre de puntos estacionarios y todos ellos, salvo uno, son óptimoslocales. Puesto que si se restringe la atención a un pequeño entorno de ellos, se convierten en máximos o mínimos locales. La ecuación f´(x) = 0 no puede ser resuelta en formacerrada, por lo que se deben utilizar métodos numéricos. La existencia de un conjunto infinito de puntos candidatos y la ausencia de un método para generarlos explícitamente, conducen a la imposibilidad de conocer, con total certidumbre, si un determinado candidato es el óptimo global. Estamos interesados en la clase de funciones tales que sus mínimos locales sean también globales. En la figura se da una función que no cumple esta condición. Hay puntos en el intervalo que están por encima del segmento que une los mínimos. La convexidad es aquí suficiente para evitar este comportamiento. Para ser convexa se exige que el grafo esté por debajo del intervalo que une los extremos. Figura 11. Ilustración de la Propiedad de Convexidad

More Related