1 / 62

Management of Infants requiring Venovenous ECMO

Management of Infants requiring Venovenous ECMO. Sixto F. Guiang, III Dept. of Pediatrics University of Minnesota. Neonatal ECMO = 73 % of all ECMO. VV ECMO = 20% of all Neonatal Pulmonary. University of Michigan. JAMA 2000;283:904-908 N= 1000 Newborns N=586 Survival 88% MAS 98%

adila
Download Presentation

Management of Infants requiring Venovenous ECMO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Management of Infants requiring Venovenous ECMO Sixto F. Guiang, III Dept. of Pediatrics University of Minnesota

  2. Neonatal ECMO = 73 % of all ECMO VV ECMO = 20% of all Neonatal Pulmonary

  3. University of Michigan JAMA 2000;283:904-908 • N= 1000 • Newborns N=586 • Survival 88% • MAS 98% • CDH 68% • Others 84-93% • 90% veno-venous • 9% IVH

  4. VV ECMO • Respiratory Mode for all ages • Infants 20% of all Respiratory ECMO • Approximately 800 cases / yr • Pediatric 28% of all Respiratory ECMO • Approximately 200 cases / yr

  5. Pediatric VV ECMO • Pediatr Crit Care Med 2003;4:291-298 • Single Center 1991-2002 • N = 82 ECMO for Respiratory Failure • Venovenous 83% • Venoarterial 17% • Unable to place VV 43%

  6. Pediatric VV ECMO • Venovenous • Dx • ARDS • RSV bronchiolitis • Penumonia • Outcomes • Lower degree of respiratory failure • Shorter ECMO (212 hour vs 350 hours) • Higher survival (81% vs. 64%)

  7. Pediatric VV ECMO Pediatr Crit Care Med 2003;4:291-298

  8. Infusion limb Drainage limb

  9. Inclusion / Exclusion Guidelines- Same as VA • age of at least 34 weeks • Weight >1.5-2.0 kg • Potentially reversible process • Absence of uncorrectable cardiac defect • Absence of major intracranial hemorrhage • Absence of uncorrectable coagulopathy • Absence of lethal anomaly • Absence of prolonged mechanical ventilation with high ventilatory settings

  10. Oxygenation FailureCriteria - VA and VV • Alveolar - arterial oxygen tension gradient • [760 - 47)-paCO2] - paO2 • 605 - 620 torr for greater than 4-12 hours • Oxygenation index • Mean Airway Pressure x FiO2 x 100/ paO2 • > 35-60 for greater than 1-6 hours

  11. Oxygenation FailureCriteria - VA and VV • paO2 • PaO2 < 35 for 2 hours • paO2 < 50 for 12 hours • Acute decompensation • paO2 < 30 torr

  12. Myocardial Failure - VA Only • Refractory hypotension • Low cardiac output • pH <7.25 for 2 hours or greater • Uncontrolled metabolic acidosis secondary to hemodynamic insufficiency • Cardiac arrest - CPR

  13. Additional Exclusion Criteria - Venovenous ECMO • Severe LV dysfunction • Severe hypotension • Cannulation during CPR • Desire to not have heparin • Bleeding

  14. Additional Exclusion Criteria - Venovenous ECMO • Use of vasopressors is NOT a contraindication for VV ECMO • Isolated RV failure is NOT a contraindication for VV ECMO

  15. Vasopresor - VV ECMO • ASAIO Journal 2003;49:568-571 • Neonatal ECMO-VA and VV • N = 43 • Quantified inotropic support - Index • 1 point = 1mcg/kgmin • Dopamine • Dobutamine • 1 point = 0.01 mcg/kg/mon • Epinephrine • Norepinephrine

  16. ASAIO Journal 2003;49:568-571

  17. ASAIO Journal 2003;49:568-571

  18. ASAIO Journal 2003;49:568-571

  19. Infants with Inotropic Score > 10 ASAIO Journal 2003;49:568-571

  20. ECMO Goals - VA and VV • Maintain adequate tissue oxygenation to allow recovery from short term cardiopulmonary failure • Adjust ventilator settings allowing for Lung Rest minimizing further ventilator /oxygen induced lung injury. Not necessarily lower settings

  21. ECMO Modes • Venoarterial - VA • Blood drains-venous system • Blood returns-arterial system • Complete cardiopulmonary support • Venovenous - VV • Blood drains-venous system • Blood returns-venous system • Pulmonary support only

  22. Advantages of VA ECMO • Able to give full cardiopulmonary support • No mixing of arterial / venous blood • Good oxygenation at low ECMO flows • Allows for total lung rest

  23. Disadvantages of VA ECMO • Ligation of the right carotid artery • Nonpulsatile arterial blood flow • Suboptimal conditions for LV function • Low preload • High afterload • High wall stress • Low coronary oxygenation

  24. Disadvantages of VA ECMO • Systemic emboli • Air • thrombus

  25. Advantages of VV ECMO • No ligation of carotid artery • Normal pulsatile blood flow • Optimize LV performance • More preload • Less afterload • Better coronary oxygenation • Less ventricular wall stress • No systemic emboli

  26. Disadvantages of VV ECMO • Need a functioning LV • Mixing of blood lower arterial saturation • Need increased ECMO flow • Need higher hemoglobin • Need to place a larger cannula • More difficulty monitoring adequacy of oxygen delivery • Recirculation of ECMO flow

  27. Disadvantages of VV ECMO • May need to convert to VA • Need to be fully heparinized • Cannula cannot be heparin bonded

  28. VV ECMO -Double lumen • Newborns • >90% of VV ECMO - Double lumen • 12F and 15F OriGen • Pediatric • 35% of VV ECMO -double lumen • 18F - largest OriGen cannula • 65% internal jugular, femoral, sapphenous

  29. VV ECMO -Double lumen • Cannula site • Internal jugular vein (15F double lumen- preferred) • Cannula tip low in the right atrium

  30. Drainage Infusion High lateral RA Mid Medial RA Low lateral RA Endhole

  31. Optimal Cannula Placement • Adequate size • Correct depth • Low Right Atrium • Correct Rotation • Label visible • Drainage limb (Blue) posterior • Infusion limb (Red) anterior • Vertical orientation • Head - midline • No Kinks

  32. Recirculation • Oxygenated ECMO blood returning to the ECMO circuit immediately after infusion

  33. Recirculation factors • Head /cannula position • Changes with head rotation • Changes in lung volume / relative position of the heart and cannula • ECMO flow • Right atrial size / intravascular volume • RV contractility

  34. ECMO blood flow to baby - 160 ECMO Flow reads 200

  35. ECMO blood flow to baby - 250 ECMO Flow reads 500

  36. ECMO Flow -Recirculation • More ECMO flow will always increase recirculation • More ECMO flow may either • Increase blood flow to baby • Decrease blood flow to baby

  37. VA ECMO • ECMO flow rate is proportional to the level of support • More flow More support • Always advantageous if more flow is possible • More ECMO flow will always increase SvO2

  38. Pulmonary Support - VV • Net ECMO blood flow of infant = measure ECMO flow - recirculation flow • ECMO flow (flow probe) DOES NOT indicate level of support • SvO2 DOES NOT reflect level of systemic oxygen delivery

  39. Circulatory Support • Net flow to baby assessed by • Infant color • Infant arterial saturation and PaO2

  40. Assessment of Recirculation • More recirculation if • Decreasing baby arterial sat or PaO2 • Increasing SvO2 on ECMO circuit • Decreasing color difference on drainage and infusion limbs of circuit

  41. Reducing Recirculation • Adjusting relative cannula position • Head position • Lung inflation • Decrease ECMO flow • Increase intravascular volume • Increase RV contractility • Volume • Vasopressors • Pulmonary vasodilators

  42. VV - VA Conversion • Needed if • 10-15% of cases • Hemodynamic support is inadequate • Respiratory support is inadequate • More problematic when ultrafiltration is used

  43. VV ECMO - Specific Issues • ECMO Prime • Must have added heparin • Must have Ca added • Ionized Ca on circuit must be checked prior to cannulation • Potassium must be checked

  44. Heparin • If no heparin added • Addition of Ca binds citrate of blood products • Loss of anticoagulant activity • Acute clotting of the entire circuit • Need to prime another circuit

  45. Calcium • If no calcium added • Acute hypocalcemia - Ca binds to citrate of blood products • Loss of LV and RV contractility • Acute hypotension • Cardiac arrest

  46. Potasium • If potassium in prime is not checked • Possible higher serum K from the stored PRBC • Acute hyperkalemia • Arrythmia • Cardiac arrest

More Related