320 likes | 476 Views
The Cutoff Rate and Other Limits: Passing the Impassable Richard E. Blahut University of Illinois UIUC. Shannon’s Ideal Channel. Stationary Discrete Memoryless. Example: Binary Memoryless Channel. A Large Code. … 0 0 0 1 1 1. … 0 0 0 … 0 0 1 … 0 1 0 … 0 1 1 … 1 1 1.
E N D
TheCutoff Rate and Other Limits:Passing the ImpassableRichard E. BlahutUniversity of IllinoisUIUC
Shannon’s Ideal Channel • Stationary • Discrete • Memoryless Example: Binary Memoryless Channel
A Large Code … 0 0 0 1 1 1 … 0 0 0 … 0 0 1 … 0 1 0 … 0 1 1 … 1 1 1 0 1 0 0 1 1 0 1 0 1 0 … 1 1 1 0 0 1 0 1 1 0 1 … 0 1 1 1 0 0 1 0 1 1 1 … 1 0 1 …. . . . 1 1 1 1 1 0 0 0 1 0 0 … 0 0 … 0 0 … 0 0 … 0 0 … . . . 1 1 …
+ + A convolutional encoder +
There are binary codes Information theory asserts existence of good codes Coding theory wants practical codes and decoders
Brief History of Codes • Algebraic Block Codes 1948 • Reed-Solomon codes (1960) • Convolutional Codes 1954 • Sequential decoding (1951) • Viterbi algorithm (1967) • Euclidean Trellis Codes 1982 • Turbo Codes 1993 • Gallager (LDPC) codes (1960)
Decoders Maximum Likelihood Maximum Block Posterior Maximum Symbol Posterior Typical Sequence Iterative Posterior Minimum Distance Bounded Distance
My View • Channel Capacity • Cutoff Rate • Critical Rate Distance -based codes Likelihood -based codes Posterior -based codes Polar codes
Channel Error Exponent Fact #1 Codes exist such that Fact #2 Every code satisfies For any fixed there is a sequence of codes for which exponentially in blocklength. This sequence does not approach
Channel Capacity Channel Critical Rate Channel Cutoff Rate
Binary Hypotheses Testing Type 1 Error Type 2 Error
Binary Hypotheses Testing Change Notation
and Bounds on Upper Bounds on Sphere Packing Bound Lower Bounds on Minimum Distance Bound Random Coding Bound Expurgated Bound
A Code Sequence Approaching Capacity is quadratic near Let be a sequence with Then with so with if
Capacity: C • Shannon (1948) • Cutoff Rate: • Jacobs & Berlekamp (1968) • Massey (1981) • Arikan (1985/1988) • Error Exponent: • Gallager (1965) • Forney (1968) • Blahut (1972)
Gallager (1965) Forney (1968) Blahut (1972) where is the Kullback divergence
Forney’s List Decoding Likelihood Function Likelihood Ratio
Sequential Decoding • Exponential waiting time • Work exponential in time • Pareto Distribution with • Work unbounded if Sequential decoding fails if Is maximum likelihood decoding sequential decoding?
Pareto Distribution Two Pareto parameters and
The Origin of a Pareto Distribution Start with an exponential distribution If is exponential, then is a Pareto distribution
The Origins of Graph-Based Codes Brillouin deBrogle Shannon Battail (1987) Hagenauer (1989) Berrou et al (1993)
Coding Beyond the Cutoff Rate Parallel – Pinsker Hybrid – Jelinek Turbo – Berrou/Glavieux LDPC – Gallager/Tanner/Wiberg Polar - Arikan
The Massey Distraction (1981) QEC BEC QEC 2 BEC
The Arkan Redistraction* *Rhetorical