1 / 18

ANCOVA Regression with more than one line

ANCOVA Regression with more than one line. Andrew Jackson a.jackson@tcd.ie. Focus on gene / environment effects. Prof. Donal Manahan’s seminar “Evolution and development: an ecological perspective” 3/11/2011 Growth rates are affected by extrinsic environmental conditions

adsila
Download Presentation

ANCOVA Regression with more than one line

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANCOVARegression with more than one line Andrew Jackson a.jackson@tcd.ie

  2. Focus on gene / environment effects • Prof. Donal Manahan’s seminar “Evolution and development: an ecological perspective” 3/11/2011 • Growth rates are affected by extrinsic environmental conditions • Growth rates are affected by intrinsic physiological factors which may be governed by genetic factors

  3. Experiments • Rear larval oysters at different temperatures • Record simple growth rate as mm/week • Repeat the experiment with different genotypes

  4. The effect of temperature Intercept = 5, slope = 1.3

  5. The effect of genotype

  6. The effect of both together

  7. How do these lines differ? • Temperature affects both genotypes equally • There is a fixed effect of genotype • Constant for all temperatures • The red genotype grows faster than the black one • coefficients • Slopes = 1.3 • red intercept = 8 • black intercept=5

  8. A different genotype

  9. How do these lines differ? • There is still an effect of temperature • But, now it is different for each genotype • The effect of genotype is no longer fixed for all temperatures • There is an interaction between temperature (environment) and genotype • Coefficients • Green slope = 1.8, intercept = 8 • Black slope = 1.3, intercept = 5

  10. A slightly different question And why its important to consider the linear covariate when comparing between groups

  11. How do we compare two lines statistically? • Known as: • Analysis of Covariance:ANCOVA • Also a GLM with fixed factors and linear covariates

  12. An alternative dataset • Experiment to study effect of herbivores on primary productivity in ecosystems • Series of in situ exclusion experiments • Measured: • Seed mass (g) • Grazed / Ungrazed • Root diameter at start of experiment

  13. The Data Covariate Response Fixed Factor

  14. Questions to ask • How does grazing affect seed production? • Why was root diameter recorded? • How might this have changed the picture if it were omitted? • What do we need totest statistically to address our hypothesis?

  15. Testing parallel lines • Pick one line to be the reference (e.g. Grazed) • What is the equation for the Grazed line? • Seed = b0 + b1Root • What is the equation for Ungrazed line? • Seed = b0 + bug + b1Root

  16. Testing parallel Lines in R • Call: • glm(formula = Fruit ~ Root + Grazing, data = mydata) • Deviance Residuals: • Min 1Q Median 3Q Max • -17.1920 -2.8224 0.3223 3.9144 17.3290 • Coefficients: • Estimate Std. Error t value Pr(>|t|) • (Intercept) -127.829 9.664 -13.23 1.35e-15 *** • Root 23.560 1.149 20.51 < 2e-16 *** • GrazingUngrazed 36.103 3.357 10.75 6.11e-13 *** • --- • Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 • AIC: 271.13 • Number of Fisher Scoring iterations: 2

  17. Testing non-parallel lines • Pick one line to be the reference (e.g. Grazed) • What is the equation for the Grazed line? • Seed = b0 + b1Root • What is the equation for Ungrazed line? • Seed = b0 + bug + (b1+b2)Root • Seed = b0 + bug + b1Root + b2Root_UG

  18. Testing parallel Lines in R • Call: • glm(formula = Fruit ~ Root * Grazing, data = mydata) • Deviance Residuals: • Min 1Q Median 3Q Max • -17.3177 -2.8320 0.1247 3.8511 17.1313 • Coefficients: • Estimate Std. Error t value Pr(>|t|) • (Intercept) -125.173 12.811 -9.771 1.15e-11 *** • Root 23.240 1.531 15.182 < 2e-16 *** • GrazingUngrazed 30.806 16.842 1.829 0.0757 . • Root:GrazingUngrazed 0.756 2.354 0.321 0.7500 • --- • Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 • AIC: 273.01 • Number of Fisher Scoring iterations: 2

More Related