1 / 4

How to Select Classes for Data Science That Will Help You Get a Job

Read on for this step-by-step guide that will enable you to come up with a realistic plan on which classes to take to acquire skills and make yourself more marketable to employers. Here in this article, Advanto Software will guide you in the selection of classes for Data Science.

advanto1
Download Presentation

How to Select Classes for Data Science That Will Help You Get a Job

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HowtoSelectClassesforDataScience ThatWillHelpYouGetaJob • Itisalwaysexcitingandatthesametimechallengingasonecanthinkofenteringacareerindata science.Asmuchasorganizationsstartpracticingbigdataintheiroperations,theyarelikelyto requiredatascientists.Performanceinclassgreatlydetermineswhetheronewillsucceedinthis competitiveworldhencetheneedtoselecttherightcourses.Readonforthisstep-by-stepguide thatwillenableyoutocomeupwitharealisticplanonwhichclassestotaketoacquireskillsand makeyourselfmoremarketabletoemployers.Hereinthisarticle,AdvantoSoftwarewillguideyou intheselectionofclassesforDataScience. • DefiningtheEssenceofClassesforDataScience • Wehavetoemphasizethat,whileconsideringcourses,oneshoulddefinethebasicskillsneededforadatascientist’sposition.Insimplewords,datascienceisaninterdisciplinaryapproachinvolving statisticalanalysis,programming,anddomainknowledge.Theprimaryskillsneededinclude: • StatisticalAnalysisandProbability • ProgrammingLanguages(Python,R) • MachineLearningAlgorithms • DataVisualizationTechniques • BigDataTechnologies • DataWranglingandCleaning • 1.Inthiscase,oneshouldtrytoconcentrateonthoseacademicdisciplinesthatformthebasisfor datascienceclasses.

  2. StatisticalAnalysisandProbability • Datascience’sfoundationisstatisticalanalysis.Thisprocesscomprisesknowledgeofdistributions, testingofhypotheses,andinference-makingprocessesoutofdata.Classesinstatisticalanalysiswill cover:Classesinstatisticalanalysiswillcover: • DescriptiveStatistics:Arithmeticaverage,positionalaverage,mostfrequentvalue,and measureofvariation. • InferentialStatistics:ConfidenceIntervals,HypothesisTesting,andRegressionAnalysis. • ProbabilityTheory:Bayes’Theorem,probabilitydensityanddistributionfunctionsand stochasticprocesses. • ProgrammingforDataScience • Tobeprecise,adatascientistcannotaffordtohavepoorprogrammingskills.PythonandRarethe twomostpopularlanguagesinthearea.Lookforclassesthatoffer: • PythonProgramming:Developmentskillsincertainlibraries,forinstance,Pandas,NumPy, andScikit-learn. • RProgramming:Thismeansfocusonpackagessuchas;ggplot,dplyr,andcaret. • DataManipulationandAnalysis:Approachestodatamanagementandanalysis. • MasterLevelDataScienceConcepts • MachineLearningandAI • MachineLearningisanimportantaspectofdatascience.Advancedcoursesshoulddelveinto: StatisticalAnalysisandProbability • SupervisedLearning:Supervisedtechniqueslike;decisiontrees,randomforest,andSupport VectorMachinesbothclassificationandregression. • UnsupervisedLearning:Supervisedmethodssuchasdecisiontrees,regressionanalysis, logisticregression,neuralnetworks,supportvectormachines,andNaïveBayes. • DeepLearning:Someofthemostcommonlyreferredneuralnetworksincludethefollowing; neuralnetworks,convolutionalneuralnetworks(CNNs),andrecurrentneuralnetworks (RNNs). • BigDataTechnologies • Giventheemergenceofbigdata,bigdatatechnologiesarebecomingvitaltobeacquaintedwith. Classestoconsiderinclude: • HadoopEcosystem:ExplainingHadoop,MapReduce,andHadoopfilesystem(HDFS). • Spark:LearningApacheSparkaboutBigdatafasterdataprocessingandanalysis. • NoSQLDatabases:FunctionsrelatedtodatabasessuchastheuseofMongoDBand Cassandra. • EmphasizeDataVisualizationSkills • VisualizationTools:IntensiveanalyticaltraininginTableau,PowerBI,orD3tools.Js. • GraphicalRepresentation:Waysofeffectiveandefficientmakingofcharts,graphs,and dashboardsrequiredforbusinessandotherorganizationalunits.

  3. InteractiveVisualization:Challenginglanguagedesignandcreatinginterestingdata-driven narrativeswiththehelpoflibrarieslikePlotlyorBokeh. • FieldWorkandApplicationorganizations • Project-BasedLearning • Hands-onexperienceisvital.Optforclassesthatoffer: • CapstoneProjects:Simulatedbusinessscenariosthatreplicateproblemsthatorganizations encounter. • CaseStudies:Solutionstodatascienceproblemsindifferentdomainsandperspectivesonthe problemsindepth. • InternshipsandCo-ops:Companiesandactualpracticewiththemasacertainadvantage. • Industry-RelevantCaseStudiesClassesForDataScienceshouldinclude: • Domain-SpecificApplications:Useofdatascienceinvariousfieldssuchasfinancialand banking,healthservices,sales,andmarketing,oranyotherfieldofone’schoice. • Problem-SolvingSessions:Employingreal-lifebusinessscenariosandfindingquantitative solutionstotheproblemsarising. • EvaluatetheFairnessoftheCredentialsPresentedbytheCourseProviders • AccreditationandCertification • Itshouldbecertainthattheclassesarefromaccreditedinstitutionsoroffercertificatesthatare well-acceptedinthemarket.Lookfor: • University-BackedPrograms:UniversityorCourse/Curriculumofferedbyanaccredited UniversityoranIntuition. • ProfessionalCertifications:Certificationsfromsomeofthemanyprofessionalbodieslike theDataScienceCouncilofAmericaortheInstituteforOperationsResearchandthe ManagementSciences. • InstructorExpertise • Thestrengthsofteachersprovetobeveryinfluential. • InstructorBackground:Academicbackgroundorworkexperience,theauthor’sresearch papersandprojects,andaccomplishmentsinthefield. • CourseReviewsandRatings:Inthepresentstudy,informationfrompaststudentsaboutthe usefulnessofthecourse. • Asforthefactorsmakingupthecommunity,onehastoconsiderFlexibilityandLearningFormats. • Decidebasedonyourpreferences • OnlineCourses:Insomecases,thestudents’abilitytosettheirownpaceoflearningand; Onlineprogramsaregenerallycheaperthantheirtraditionalcounterparts.

  4. On-CampusClasses:Closecontactwiththeinstructorsasthestudentsengageinawell- organizedlearningprocess. • Conclusion • ChoosingtheAdvantoSoftwareclassesfordatascienceisnotameredecisionofchoosingcourses, butrather,itinvolvesidentifyingtheimportantcompetencies,extendingthecoursetopicstothe basicandthemodernlevels,andalsoensuringthatthecoursesprovidepracticalexperienceasmuchaspossiblewiththe100%jobassurance.Itwillthereforebebeneficialtoselectcoursesthat providemoreextensivecoverageonstatistics,dataprogramming,machinelearning,anddata visualizationtoenhanceyourchancesofgettingajobindatascience.Itisalsoimportanttoevaluate thecredibilityofcourseprovidersandhowlearningformatscanbeadaptabletoone’scareerpaths. • Joinusnow:advantosoftware.com/

More Related