440 likes | 460 Views
Understanding the concept of sufficient statistics in statistical modeling using examples of Poisson and exponential distributions, and its implications in determining parameters like maximum likelihood estimation and confidence intervals.
E N D
More Chapter 4 Sufficient statistics. The Poisson and the exponential can be summarized by (n, ). So too can the normal with known variance Consider a statistic S(Y) Suppose that the conditional distribution of Y given S does not depend on , then S is a sufficient statistic for based on Y Occurs iff the density of Y factors into a function of s(y) and and a function of y that doesn't depend on
Example. Exponential IExp() ~ Y E(Y) = Var(Y) = 2 Data y1,...,yn L() = -1 exp(-yj /) l() = -nlog() - yj / yj /n is sufficient
Approximate 100(1-2 )% CI for 0 Example. spring data
Note. Expected information
Example. Bernoulli Pr{Y = 1} = 1 - Pr{Y = 0} = 0 1 L() = ^yi (1 - )^(1-yi) = r(1 - )n-r l() = rlog() + (n-r)log(1-) r = yj R = Yj is sufficient for , as is R/n L() factors into a function of r and a constant
Score vector [ yj / - (n-yj )/(1-)] Observed information [yj /2 + (n-yj )/(1-)2 ] M.l.e.
Cauchy. ICau() f(y;) = 1/(1+(y-)2 ) E|Y| = Var(Y) = L() = 1/((1+(yj -)2 ) Many local maxima l() = -log(1+(yj -)2 ) J() = 2((1-(yj -)2 )/(1+(yj -)2 )2 I() = n/2
Uniform. f(u;) = 1/ 0 < u < = 0 otherwise L() = 1/n 0 < y1 ,..., yn < = 0 otherwise
l() becomes increasingly spikey E u() = -1 i() = -
Logistic regression. Challenger data Ibinomials Rj , mj , j
Likelihood ratio. Model includes dim() = p true (unknown) value 0 Likelihood ratio statistic
Justification. Multinormal result If Y ~ N (,) then (Y- )T -1(Y- ) ~ p2
Uses. Pr[W(0) cp(1-2 )] 1-2 Approx 100(1-2 )% confidence region
Example. exponential Spring data: 96 < <335 vs. asymp normal approx 64 < <273 kcycles
Prob-value/P-value. See (7.28) Choose T whose large values cast doubt on H0 Pr0(T tobs) Example. Spring data Exponential E(Y) = H0: = 100?
Nesting : p by 1 parameter of interest : q by 1 nuisance parameter Model with params (0, ) nested within(, ) Second model reduces to first when = 0
Example. Weibull params (,) exponential when = 1 How to examine H0 : = 1?
Challenger data. Logistic regression temperature x1 pressure x2 (0 , 1 , 2 ) = exp{}/(1+exp{}) = 0 + 1 x1 + 2 x2 linear predictor loglike l(0 , 1 , 2 ) = 0 rj + 1 rj x1j + 2 rj x2j - m log(1+exp{j }) Does pressure matter?
Model fit. Are labor times Weibull? Nest its model in a more general one Generalized gamma. Gamma for =1 Weibull for =1 Exponential for ==1
Likelihood results. max log likelihood: generalized gamma -250.65 gamma -251.12 Weibull -251.17 gamma vs. generalized gamma - 2 log like diff: 2(-250.65+251.12) = .94 P-value Pr0 (12 > .94) = Pr(|Z|>.969) = 2(.166) = .332
Chi-squared statistics. Pearson's chi-squared categories 1,...,k count of cases in category i: Yi Pr(case in i) = i 0 < i < 1 1ki =1 E(Yi ) = ni var(Yi ) = i(1 - i )n cov(Yi ,Yj ) = -ij n i j E.g. k=2 case cov(Y,n-Y) = -var(Y) = -n12 = { (1 ,...,k ): 1ki = 1, 0<1 ,...,k <1} dimension k-1
Reduced dimension possible? model i () dim() = p log like general model: 1k-1 yi log i + yk log[1-1 -...-k-1], 1k yi = n log like restricted model: l() = 1k-1 yi log i() + yk log[1-1()-...-k-1()]
likelihood ratio statistic: if restricted model true The statistic is sometimes written W = 2 Oi log(Oi /Ei ) (Oi - Ei )2/Ei
Example. Birth data. Poisson? Split into k=13 categories [0,7.5), [7.5,8.5),...[18.5,24] hours O(bserved) 6 3 3 8 ... E(xpected) 5.23 4.37 6.26 8.08 ... P = 4.39 P-value Pr(112 > 4.39) = .96
Two way contingency table. r rows and c columns n individuals Blood groups A, B, AB, O A, B antigens - substance causing body to produce antibodies group count model I model II O = 1 - A - B
Question. Rows and columns independent? W = 2 yij log nyij / yi.y.j with yi. = j yij ~ k-1-p2 = (r-1)c-1)2 with k=rc p=(r-1)+(c-1) P = (yij - yi. y.j /n)2 / (yi. y.j /n) ~ (r-1)(c-1)2
Model 1 W = 17.66 Pr(12> 17.66) = Pr(|Z| > 4.202) = 2.646E-05 P = 15.73 Pr(12> 15.73) = Pr(|Z| > 3.966) = 7.309E-05 k-1-p = 4-1-2 = 1 Model 2 W = 3.17 Pr(|Z| > 1.780) = .075 P = 2.82 Pr(|Z|>1.679) = .093
Incorrect model. True model g(y), fit f(y;)
Model selection. Various models: non-nested Ockham's razor. Prefer the simplest model
Formal criteria. Look for minimum
Example. Spring failure Model p AIC BIC M1 12 744.8* 769.9* M2 7 771.8 786.5 M3 2 827.8 831.2 M4 2 925.1 929.3 6 stress levels M1: Weibull - unconnected , at each stress level