1 / 27

Wide Bandgap Semiconductor Nanowires for Sensing

Wide Bandgap Semiconductor Nanowires for Sensing. S.J. Pearton 1 , B.S. Kang 1 , B.P.Gila 1 , D.P. Norton 1 , L.C.Tien 1 , H.T.Wang 2 , F. Ren 2 , Chih-Yang Chang 3 ,G.C. Chi 3 ,Wei-Ming Wang 3 and Li-Chyong Chen 4

agatha
Download Presentation

Wide Bandgap Semiconductor Nanowires for Sensing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wide Bandgap Semiconductor Nanowires for Sensing • S.J. Pearton1, B.S. Kang1, B.P.Gila1, D.P. Norton1, L.C.Tien1, H.T.Wang2, F. Ren2, Chih-Yang Chang3,G.C. Chi3,Wei-Ming Wang3 and Li-Chyong Chen4 • 1Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, U.S.A • 2Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, U.S.A. • 3Department of Physics, National Central University, Jhong-Li 320, Taiwan • 4Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

  2. GaN Applications • Blue/violet/white/UV LED Blue/green/UV lasers • High power microwave transistors • Robust sensors

  3. GaN NWs grown by catalytic chemical vapor deposition

  4. 500μm 5μm Ti/Au Pad SiNx/Si Ti/Au Pad FESEM image & CL spectrum of a single GaN NW with two electrodes

  5. Gate voltage-dependent I-Vsd curves of a single GaN NW The carrier mobility is estimated at 30 cm2/V·s. The carrier concentration is estimated to be 2×1017 cm-3

  6. InN NWs grown by catalytic thermal-CVD XRD spectrum HRTEM image

  7. Temperature-dependent I-V curve of a InN NW

  8. Resistivity comparison between thin film and nanowire (n-type GaN and InN)

  9. Single Crystal Nanowire 0002 0002 1010 1010 • TEM image of an individual ZnO Nanowire. • An estimated diameter of the wire is 20 nm. • A small particle embedded at the tip of the wire is Ag or Ag-Zn alloy. • HR-TEM image and selected area diffraction (SAD) of the nanowire indicates that it is a single crystal ZnO.

  10. Sheath (Zn,Mg)O (Hexa.) (Mg,Zn)O (cubic) Core (Zn,Mg)O (Hexa.) Zn1-xMgxO (x <0.02) (Hexa.) Heterostructured nanowires Radial heterostructure Axial heterostructure Type I Type II ZnO (Zn1-XMgX)O ZnO (Zn1-XMgX)O Growth condition -. Zn : 3 × 10-6 mbar -. Mg : 2 × 10-7 mbar -. O3/O2 : 5 × 10-4 mbar, -. Tg= 400C Growth condition -. Zn : 3 × 10-6 mbar -. Mg : 4 × 10-7 mbar -. O3/O2 : 5 × 10-4 mbar, -. Tg= 400C

  11. Sheath (Zn,Mg)O (Hexa.) Core (Zn,Mg)O (Hexa.) Type I - Radial heterostructured nanowire -. Nanowire is crystalline with the wurtzite crystal structure maintained throughout the cross-section. -. The higher contrast for the center core region clearly indicates a higher cation atomic mass. -. Core : zinc-rich Zn1-xMgxO -. Sheath : Mg-rich Zn1-yMgyO

  12. a b b (Mg,Zn)O (cubic) Zn1-xMgxO (x <0.02) (Hexa.) 1120 0002 10 nm Type II - Radial heterostructured (Zn,Mg)O/(Mg,Zn)O nanowire Compositional line scan across the nanowire (STEM) (11ī) -. Core : Zn1-xMgxO Hexagonal Wurtzite structure -. Sheath (Shell): Mg1-xZnxO Cubic Rock salt structure Zn (1ī1) Mg (200) [0001]

  13. Intensity(arb.) 2.04 Å Position across nanowire(nm) 020 200 B=[001] (Mg,Zn)O nanowire (cubic rock salt structure) Growth condition -. Zn : 3 × 10-6 mbar -. O3/O2 : 5 × 10-4 mbar, -. Mg : 8 × 10-7 mbar -. Tg = 400C

  14. Nanowires vs Zn, Mg pressures Radial heterostructured (Zn,Mg)O (Mg,Zn)O ZnO I II hexagonal core / sheath core / sheath cubic (Zn1-xMgx)O/(Zn1-xMgx)O (Zn1-xMgx)O / (Mg,Zn)O wurtzite st. rock salt st. hexa. / hexa. hexa. / cubic wurtzite / wurtzite wurtzite / rock salt st.  Zn = 3 × 10-6  O3/O2 = 5 × 10-4 Mg = none  Zn = 3 × 10-6  O3/O2 = 5 × 10-4 Mg = 2 × 10-7  Zn = 3 × 10-6  O3/O2 = 5 × 10-4 Mg = 4 × 10-7  Zn = 3 × 10-6  O3/O2 = 5 × 10-4 Mg = 8 × 10-7 [unit: mbar] Tg= 400C

  15. Fabrication of ZnO nanowire device ZnO Nanowire  Motivation Electrode (Al/Pt/Au) Al/Pt/Au -. Fundamental understanding of transport -. Nanoelectronics -. Nano sensors (UV, chemical, bio.) Insulator  Structure of Nanodevice -. Electrode : Al/Pt/Au by sputtering -. Diameter of ZnO nanowire : 130 nm -. Channel Length : 3.7 m

  16. Prototype device fabrication sequence Find Nanowires Relative To Alignment Marks Deposit SiO2 Spin PMMA Resist Design and Deposit Alignment Marks E-beam Write Aligned Pattern And Develop Ethanol and Nanowire Suspension Deposit Metal And Lift Off Evaporation & Nanowires Deposition

  17. on off UV Response of single ZnO nanowire UV 366nm at VD 0.25V UV 366nm Dark

  18. Pt/ZnO nanowire Schottky Diode Pt/Au (schottky contact) Al/Pt/Au Al/Pt/Au Forward Bias Reverse Bias I=Io(eqV/nkT-1) Ideality factor = 1.1

  19. Gate oxide ((Ce,Tb)MgAl11O19) Gate(Al/Pt/Au) Drain (Al/Pt/Au) Source (Al/Pt/Au) Nanowire Insulator (SiO2) Si Gate Oxide Source Drain Nanowire Depletion-mode ZnO nanowire field-effect transistor

  20. Insulator (SiO2) Si pH Sensing with Single ZnO Nanowire electrode (Al/Pt/Au) Nanowire Microchannel

  21. Hydrogen Detection • Hydrogen has been used as fuels in many NASA’s space exploration missions. • President Bush’s Hydrogen Fuel Initiative in 2003. • Why hydrogen sensing? • Safety! • Production, Storage, Transport • Hydrogen concentration in air reaches a dangerous level at 4%. ppm-level detection is needed.

  22. Al/Pt/Au Al/Pt/Au Simple Fabrication Process • Direct deposition of metal contacts on the silicon substrate with nanorods. • No need to go through sonication and E-beam lithography to fabricate the sensors. • The sensor has better sensitivity (more nanorods combined).

  23. Hydrogen-Selective Sensing at Room Temperature with ZnO Nanorods

  24. Hydrogen-selective gas sensing at 25C with Pd/ZnO nanorods

  25. Wireless Hydrogen Sensor System Prototype – powered by battery Remote Sensor Central Station Micro- controller Micro- controller 16x1 LCD RX Low-noise Op Amp TX 916 MHz

  26. Self-Powered Wireless Sensor • Use energy from ambient • Solar, vibration, ambient RF radiation • Use energy supplied locally • Hydrogen flow, micro fuel cell, acoustic, thermal gradient • Use energy supplied remotely • Wireless power supply (wireless power transmission)

  27. Conclusions • High quality,single-crystal growth of wide bandgap semiconductor nanowires • Bimodal growth of cored ZnO/(Zn,Mg)O heterostructured nanowires. • Type I -. Core : Zn1-xMgxO (x < 0.02) , Hexagonal wurtzite structure -. Sheath : Zn1-xMgxO (x >> 0.02), Hexagonal wurtzite structure • Type II -. Core : Zn1-xMgxO (x < 0.02), Hexagonal wurtzite structure -. Sheath : (Mg,Zn)O, Cubic rock salt structure • (Mg,Zn)O nanowires having cubic rock salt structure • Functional Nano-devices • Pt/ZnO nanowire Schottky Diode • Depletion-mode GaN and ZnO nanowire field-effect transistor • UV, pH, & gas sensors from GaN,InN and ZnO nanowires

More Related