550 likes | 565 Views
SMart Antenna systems for Radio Transceivers (SMART).
E N D
SMart Antenna systems for Radio Transceivers (SMART) Arjan MeijerinkTE Presentation – May 27 2008University of TwenteFaculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)Centre for Telematics and Information Technology (CTIT)Telecommunication Engineering Group (TE)a.meijerink@utwente.nl
Contents 1. Introduction; 2. System overview & requirements; • Optical beamformer: • Conclusions & future work • Questions MWP » MWP in PAAs » SMART » Conclusions » Questions
1. Introduction: aim and purpose Project aim: Development of a novel Ku-band antenna for airborne reception of satellite signals , using a broadband conformal phased array Purpose: • Live weather reports; • High-speed Internet access; • Live television through Digital VideoBroadcasting via satellite (DVB-s) MWP » MWP in PAAs » SMART » Conclusions » Questions»
1. Introduction: partners & funding Project partners: Funding: The SMART project is part of the Euripides project SMART (Partners: EADS, CNAM, Radiall, CIMNE, Moyano) MWP » MWP in PAAs » SMART » Conclusions » Questions»
1. Introduction: specific targets Specific project targets: • Conformal phased array structure definition; • Broadband stacked patch antenna elements; • Broadband integrated optical beamformerbased on optical ring resonatorsin CMOS-compatible waveguide technology; • Experimental demonstrator. MWP » MWP in PAAs » SMART » Conclusions » Questions»
2. System overview & requirements 8x8 8x1 gain 40x40 optical beam width Antenna array RF front-end beamformer to receiver(s) with amplitude tapering scan angle Frequency range: 10.7 – 12.75 GHz (Ku band) Polarization: 2 linear (H/V) Scan angle: -60 to +60 degrees Gain: > 32 dB Selectivity: << 2 degrees No. elements: ~1600 Element spacing: ~/2 (~1.5 cm, or ~50 ps) Maximum delay: ~2 ns Delay compensation by phase shifters? beam squint at outer frequencies! (Broadband) time delay compensation required ! 1 Continuous delay tuning required ! MWP » MWP in PAAs » SMART » Conclusions » Questions»
controlblock 3. Optical beamformer: overview plane position & angle • Outline: • Ring resonator-based delays; • OBFN structure • OBFN control block; • E/O & O/E conversion; • System performance. antenna viewing angle feedbackloop Antenna elements RFfront-end OBFN chip E/O O/E to receiver(s) ? ? ? tunable broadband delays& amplitude weights. NLR & Cyner UT/TE & LioniX MWP » MWP in PAAs » SMART » Conclusions » Questions»
Periodic transfer function; Flat magnitude response. Phase transition aroundresonance frequency; Bell-shaped group delay response; Trade-off: delay vs. bandwidth f 3. Optical beamformer: ORR-based delays Single ring resonator: Phase T : Round trip time; : Power coupling coefficient; : Additional phase. Group delay f MWP » MWP in PAAs » SMART » Conclusions » Questions»
Rippled group delay response; Enhanced bandwidth; Trade-off: delay vs. bandwidth vs. delay ripple vs. no. rings; bandwidth ripple 3. Optical beamformer: ORR-based delays Cascaded ring resonators: Group delay f Or in other words: for given delay ripple requirements: Required no. rings is roughly proportional to product of required optical bandwidth and maximum delay MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output 12 rings 7 combiners 31 tuning elements MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: 8x1 OBFN chip Single-chip 8x1 OBFN realized inCMOS-compatible optical waveguide technology TriPleX Technology 1 cm 4.85 cm x 0.95 cm Heater bondpad MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: OBFN measurements OBFN Measurement results L. Zhuang et al., IEEE Photonics Technology Letters, vol. 19,no. 15, Aug. 2007 1 ns ~ 30 cm delay distance in vacuum MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: OBFN control block • Outline: • Ring resonator-based delays; • OBFN structure; • OBFN control block; • E/O & O/E conversion; • System performance. plane position & angle antenna viewing angle feedbackloop controlblock Antenna elements RFfront-end OBFN chip E/O O/E to receiver(s) NLR & Cyner UT/TE & LioniX MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: OBFN control block beam angle NLR delays + amplitudes calculation ARM7microprocessor chip parameters (isand is) DA conversion & amplification heater voltages MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: OBFN control block 1 2 3 Td ( f ) 1 2 3 fR,3 fR,1 fR,2 • Which settings for the isand is are optimal? • Metric: MSE of phase response in band of interest • Non-linear programming solver on PC (Matlab) MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: OBFN control block Result: data set with required values of isand is as a function of required delay values (Tjs) Interpolation formulas: Store coefficients ai, ..., hiin microprocessor and calculate isand is “realtime” (<< 1 msec.) MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: OBFN control block • Outline: • Ring resonator-based delays; • OBFN structure; • OBFN control block; • E/O & O/E conversion; • System performance. plane position & angle antenna viewing angle feedbackloop controlblock Antenna elements RFfront-end OBFN chip E/O O/E to receiver(s) NLR & Cyner UT/TE & LioniX MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion • E/O and O/E conversions? • low optical bandwidth; • high linearity; • low noise RF front-end LNA photo-diode DM laser OBFN chirp! TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion • E/O and O/E conversions? • low optical bandwidth; • high linearity; • low noise RF front-end LNA photo-diode CW laser mod. OBFN beat noise! TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion • E/O and O/E conversions? • low optical bandwidth; • high linearity; • low noise RF front-end LNA photo-diode mod. OBFN CW laser TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
spectrum frequency 3. Optical beamformer: E/O and O/E conversion 2 x 12.75 = 25.5 GHz 12.75 GHz RF front-end 10.7 GHz LNA photo-diode mod. OBFN CW laser TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
spectrum frequency 3. Optical beamformer: E/O and O/E conversion 2 x 2.15 = 4.3 GHz 2150 MHz RF front-end 950 MHz LNB LNA photo-diode mod. OBFN CW laser TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
spectrum frequency 3. Optical beamformer: E/O and O/E conversion single-sideband modulation withsuppressed carrier (SSB-SC) • Implementation of optical SSB modulation? • Optical heterodyning; • Phase shift method; • Filter-based method. RF front-end 1.2 GHz LNB photo-diode • Balanced optical detection: • cancels individual intensity terms; • mixing term remains; • reduces laser intensity noise; • enhances dynamic range. SSB-SC mod. filter OBFN CW laser filter TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
spectrum frequency 3. Optical beamformer: E/O and O/E conversion single-sideband modulation withsuppressed carrier (SSB-SC) • Filter requirements: • Broad pass band and stop band (1.2 GHz); • 1.9 GHz guard band; • High stop band suppression; • Low pass band ripple and dispersion; • Low loss; • Compact; • Same technology as OBFN. RF front-end 1.2 GHz LNB mod. OBFN CW laser filter TIA electrical » optical 1 chip ! optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion Possible filter structures: Mach-Zehnder Interferometer (MZI): Ring resonator-based filters: Multi-stage MZI: MZI + ring: MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion Optical sideband filter chip in the same technology as the OBFN 5 mm MZI + Ring MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion Measured filter response 3 GHz Bandwidth—Suppression Tradeoff 14 GHz 20 GHz 25 dB FSR 40 GHz MWP » MWP in PAAs » SMART » Conclusions » Questions»
f1 f2 f1 f f f MZM OSBF SA fiber coupler f RF f1 – f2 f2 f f f 3. Optical beamformer: E/O and O/E conversion Spectrum measurement of modulated optical signal Optical heterodyning technique: MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: E/O and O/E conversion Spectrum measurement of modulated optical signal MWP » MWP in PAAs » SMART » Conclusions » Questions»
MZM OSBF SA fiber coupler RF f1 – f2 f 3. Optical beamformer: E/O and O/E conversion Further demonstration of chip functionality OBFN Next steps: • Demonstrate optical homodyning by balanced detection; • Demonstrate delay of broadband RF signal in OBFN; • Combine multiple signals in OBFN by optical phase-locking . MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: noise performance Losses, noise, and distortion sky noise LNB thermal noise = RF noise + TIA thermalnoise non-linear modulator optical losses shot noise phase &intensitynoise mod. OBFN filter MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: noise performance MWP » MWP in PAAs » SMART » Conclusions » Questions»
3. Optical beamformer: noise performance Pin E/O OpticalBeamFormingNetwork RF1 Pout O/E RF2 RF3 analog optical link, multiport RF component, two-port • Equivalent antenna gain • antenna patterns • number of antennas • amplitude tapering • Noise temperature • sky noise • receiver noise (LNB + OBF) Pin / M equivalent antenna Pout equivalentreceiver noise temp. gain MWP » MWP in PAAs » SMART » Conclusions » Questions»
4. Conclusions & future work Conclusions: • A novel optical beamformer concept employinga fully integrated, ring resonator-based OBFNand filter-based optical SSB-SC modulationwas introduced and partly demonstrated; • Main advantages of this concept are: • low loss and large instantaneous bandwidth; • continuous tunability (high resolution); • relatively compact and light-weight realization; • inherent immunity to EMI; • potential for integration with optical distribution network; • The dynamic range of the phased array receiver system is not significantly reduced by the optical beamformer. MWP » MWP in PAAs » SMART » Conclusions » Questions»
4. Conclusions & future work Future work: • Characterize demonstrator chipset; • Finalize software for control block; • Build up beamformer demonstrator; • Integrate with rest of system (array + front-end); • Scale up demonstrator to >1000 antenna elements. MWP » MWP in PAAs » SMART » Conclusions » Questions»
Acknowledgement NLR: Jaco Verpoorte Pieter Jorna Adriaan Hulzinga Guus Vos Rene Eveleens Harm Schippers Cyner Substrates: Marc Wintels Hans van Gemeren UT/TE: Chris Roeloffzen Leimeng Zhuang David Marpaung Bas den Uyl Mark Ruiter Timon Vrijmoeth Jorge Pena Hevilla Robbin Blokpoel Tomas Jansen Roland Meijerink Jan-Willem van ‘t Klooster Liang Hong Eduard Bos Wim van Etten LioniX: Arne Leinse Albert Borreman Marcel Hoekman Douwe Geuzebroek Robert Wijn Rineke Groothengel Melis Jan Gilde René Heideman Hans van den Vlekkert MWP » MWP in PAAs » SMART » Conclusions » Questions»
Questions Questions? MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. A: Phased Array Antenna : single antenna MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. A: Phased Array Antenna: multiple antennas MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. A: Phased Array Antenna: beam steering MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. A: Phased Array Receive Antenna: delays 2T T MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. A: Phased array antenna: beamforming network antenna 1 + T antenna 2 + 2T antenna 3 MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. A: Phased array antenna: beamforming network Challenges: • Small beam width; • High gain; • Low sidelobes; • Agile steering; • High bandwidth; • High resolution; • Low costs. • High number of antenna elements; • Amplitude tapering; • Fast tuning; • True time delays; • Continuous tunability; • High integration level. 2T T combiner to receiver MWP » MWP in PAAs » SMART » Conclusions » Questions»
RF in E/O optical circuit O/E RF out RF in microwave circuit RF out photonic control App. B: Microwave Photonics: what, and why? What? Microwave Photonics (MWP): [Capmany & Novak, Nature Photonics 2007] the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems 1. Performing microwave functions in optical domain; 2. Control microwave components by means of photonics. MWP » MWP in PAAs » SMART » Conclusions » Questions»
App. B: Microwave Photonics: what, and why? What? • Signal generation, for instance • RF carriers; • ultra-short (UWB) pulses; • Signal transport/distribution, for instance • sub-carrier multiplexing (SCM) for CATV distribution; • antenna remoting for e.g. RADAR; • Radio-over-Fiber distribution in wireless access networks; • Signal processing, for instance • high-frequency filtering; • up/down conversion; • A/D conversion; • beamforming for phased array antennas. MWP » MWP in PAAs » SMART » Conclusions » Questions»